搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光成丝测量燃烧场温度

李帅瑶 张大源 高强 李博 何勇 王智化

引用本文:
Citation:

基于飞秒激光成丝测量燃烧场温度

李帅瑶, 张大源, 高强, 李博, 何勇, 王智化

Temperature measurement in combustion flow field with femtosecond laser-induced filament

Li Shuai-Yao, Zhang Da-Yuan, Gao Qiang, Li Bo, He Yong, Wang Zhi-Hua
PDF
HTML
导出引用
  • 激光诊断技术是燃烧温度场无干扰在线测量的主要手段, 开发精确的燃烧场温度测量技术对于研究燃烧基础问题具有重要意义. 目前, 基于激光的燃烧场测温技术大多以纳秒激光作为光源, 基于飞秒激光的测温技术相对较少. 本文开发了一种基于飞秒激光成丝的燃烧场温度测量方法. 飞秒激光在光学介质中传播时, 会形成一条具有一维长度且强度均匀分布的光丝, 由于光丝内的功率密度极高, 足以通过光解和激光诱导光化学反应等方式将原子/分子激发到高能级, 进而向低能级跃迁时释放荧光. 通过相机收集荧光信号即可获得光丝的空间长度, 光丝的长度与光学介质的温度密切相关, 将光丝置于已知温度的燃烧场中, 可获得不同温度下的光丝长度, 结合理论推导, 对实验数据进行拟合, 可获得光丝长度与温度的定量关系, 进而实现燃烧场温度的测量.
    Laser-based diagnostic techniques are critical nonintrusive methods of measuring the in-situ temperature in combustion flow fields. Developing temperature measurement techniques with high accuracy and precision is of great significance for studying the combustion. At present, nanosecond (ns) lasers are commonly used in these methods. However, the researches based on femtosecond (fs) lasers are relatively few. Here, we develop a thermometry technique for combustion fields based on fs laser-induced filament. When the fs laser propagates in an optical medium, a long uniformly distributed plasma channel (also named filament) will be generated. The clamped intensity inside the filament is high enough to generate excited atoms/molecules through fs laser-induced photochemical reactions. Subsequently, the excited atoms/molecules release fluorescence signals. The length of the filament can be measured by imaging the fluorescence signal with an ICCD camera, which is evaluated by the full width at half maximum (FWHM) of the spatial distribution of the filament emission signal. Based on theoretical analysis, the experimental data of the filament length are fitted with a power function, and the result is satisfactory compared with the R-squared measure of goodness (R2) of 0.984. This indicates that the filament length is correlated well with the temperature of the combustion field. A monotonic quantitative relationship between the filament length and the temperature can be established by a calibration process, and then the temperature of the combustion field can be measured. When the temperature changes from 1630 to 2007 K, the length of the filament shortens by 38%. This indicates that the filament length is sensitive to the temperature of the flow field. When the temperature is 2007 K, the absolute uncertainty of the measurement is ±25 K, and the relative uncertainly is about 1.2%. The spatial resolution of the measurement system is 50 μm, which was determined by a USAF 1951 Target. Based on the spatial resolution, the measurement precision can arrive at 17 K. Although, at present, this temperature measurement technique based on femtosecond laser-induced filament is used only in laminar premixed flames, it has potential applications in temperature measurements ranging from room temperature to combustion temperatures.
      通信作者: 高强, qiang.gao@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51806149, 91741205)和浙江大学能源清洁利用国家重点实验室开放基金(批准号: ZJUCEU2019011)资助的课题
      Corresponding author: Gao Qiang, qiang.gao@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51806149, 91741205) and the Open Fund Project of State Key Laboratory for Clean Energy Utilization in Zhejiang University, China (Grant No. ZJUCEU2019011)
    [1]

    冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar

    Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar

    [2]

    Wei Z, Huang Q 2020 Food Hydrocolloids 98 105314Google Scholar

    [3]

    Pramanik S, Ravikrishna R V 2020 Exp. Therm. Fluid Sci. 110 109926Google Scholar

    [4]

    Xu Z, Tian X, Zhao H 2017 Proc. Combust. Inst. 36 4443Google Scholar

    [5]

    Krishnan S, Kumfer B M, Wu W, Li J C, Nehorai A, Axelbaum R L 2015 Energy Fuels 29 3446Google Scholar

    [6]

    Zeng H, Ou D, Chen L, Li F, Yu X 2018 Opt. Eng. 57 26106Google Scholar

    [7]

    许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204Google Scholar

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Han R F 2012 Acta Phys. Sin. 61 234204Google Scholar

    [8]

    宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 240702Google Scholar

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702Google Scholar

    [9]

    Whiddon R, Zhou B, Borggren J, Alden M, Li Z S 2015 Rev. Sci. Instrum. 86 93107Google Scholar

    [10]

    Malmqvist E, Borggren J, Alden M, Bood J 2019 Appl. Opt. 58 1128Google Scholar

    [11]

    瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云 2015 物理学报 64 123301Google Scholar

    Qu P B, Guan X W, Zhang Z R, Wang S, Li G H, Ye J F, Hu Z Y 2015 Acta Phys. Sin. 64 123301Google Scholar

    [12]

    Luers A, Salhlberg A, Hochgreb S, Ewart P 2018 Appl. Phys. B-Lasers O. 124 1Google Scholar

    [13]

    Yuen F T C, Gülder Ö L 2009 Proc. Combust. Inst. 32 1747Google Scholar

    [14]

    Butterworth T D, Amyay B, Bekerom D V D, Steeg A V D, Minea T, Gatti N, Ong Q, Richard C, Kruijsdijk C, Smits J T, Bavel A P, Boudon V, Rooij G J 2019 J. Quant. Spectrosc. Radiat. Transfer 236 106562Google Scholar

    [15]

    任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 16 164201Google Scholar

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 16 164201Google Scholar

    [16]

    Cantu L M L, Grohmann J, Meier W, Aigner M 2018 Exp. Therm. Fluid Sci. 95 52Google Scholar

    [17]

    Lowe A, Thomas L M, Satija A, Lucht R P, Masri A R 2019 Proc. Combust. Inst. 37 1383Google Scholar

    [18]

    Nishihara M, Freund J B, Glumac N G, Ellott G S 2018 Plasma Sources Sci. Technol. 27 35012Google Scholar

    [19]

    Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar

    [20]

    Théberge F, Liu W, Simard P T, Becker A, Chin S L 2006 Phys. Rev. E 74 36406Google Scholar

    [21]

    Li B, Zhang D Y, Li X F, Gao Q, Zhu Z F, Li Z S 2018 J. Phys. D: Appl. Phys. 51 295102Google Scholar

    [22]

    Gao Q, Zhang D Y, Li X F, Li B, Li Z S 2019 Sens. Actuators, A 287 138Google Scholar

    [23]

    Li B, Zhang D Y, Gao Q, Li Z S 2020 Exp. Fluids 61 33Google Scholar

    [24]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [25]

    Liu Y, Durand M, Chen S, Houard A, Prade B, Forstier B, Mysyrowicz A 2010 Phys. Rev. Lett. 105 55003Google Scholar

    [26]

    Couairon A 2003 Appl. Phys. B-Lasers O. 76 789Google Scholar

    [27]

    Nibbering E T J, Grillon G, Franco M A, Prade B S, Mysyrowicz A 1997 J. Opt. Soc. Am. B: Opt. Phys. 14 650Google Scholar

    [28]

    Rabenstein F, Leipertz A 1997 Appl. Opt. 36 6989Google Scholar

  • 图 1  实验所用装置及光路图

    Fig. 1.  Diagram of experimental equipment and light path.

    图 2  (a) 燃烧器实物图; (b) 甲烷/空气层流预混火焰

    Fig. 2.  (a) Photo of the McKenna burner; (b) laminar premixed CH4/air flame.

    图 3  燃烧场温度随燃空当量比的变化

    Fig. 3.  Variation curves of temperature with equivalence ratio in the combustion field.

    图 4  (a) 甲烷/空气预混火焰中飞秒激光诱导成丝单反相机拍摄照片; (b) ICCD成像图

    Fig. 4.  (a) Digital camera photo and (b) ICCD camera image of femtosecond laser-induced filaments in a premixed CH4/air flame.

    图 5  (a) 甲烷/空气预混火焰中燃尽区飞秒激光成丝的发射光谱成像; (b) 发射光谱

    Fig. 5.  (a) Emission spectral image and (b) spectral curve of femtosecond laser-induced filament in the burned region of a premixed CH4/air flame.

    图 6  甲烷/空气预混火焰中基于飞秒激光成丝现象测温效果

    Fig. 6.  Temperature measurement based on femtosecond laser-induced filaments in premixed CH4/air flames.

    图 7  不同温度下甲烷/空气预混火焰燃尽区信号空间分布曲线

    Fig. 7.  Spatial distributions of filament in the burned region of premixed CH4/air flames with different temperatures

    图 8  飞秒激光成丝长度与温度的关系

    Fig. 8.  Relation between the length of femtosecond laser fila-ments and temperature.

    表 1  不同气体非线性折射率n2

    Table 1.  Nonlinear refractive index n2 of different gases.

    气体非线性折射率/10–18 cm2·W–1
    空气1.2
    甲烷1.1
    下载: 导出CSV

    表 2  不同条件下燃烧场的温度信息

    Table 2.  Flame temperatures with different equivalence ratios.

    燃空当量比温度/K
    0.81630
    0.91724
    1.01818
    1.11913
    1.22007
    下载: 导出CSV
  • [1]

    冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar

    Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar

    [2]

    Wei Z, Huang Q 2020 Food Hydrocolloids 98 105314Google Scholar

    [3]

    Pramanik S, Ravikrishna R V 2020 Exp. Therm. Fluid Sci. 110 109926Google Scholar

    [4]

    Xu Z, Tian X, Zhao H 2017 Proc. Combust. Inst. 36 4443Google Scholar

    [5]

    Krishnan S, Kumfer B M, Wu W, Li J C, Nehorai A, Axelbaum R L 2015 Energy Fuels 29 3446Google Scholar

    [6]

    Zeng H, Ou D, Chen L, Li F, Yu X 2018 Opt. Eng. 57 26106Google Scholar

    [7]

    许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 物理学报 61 234204Google Scholar

    Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Han R F 2012 Acta Phys. Sin. 61 234204Google Scholar

    [8]

    宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 240702Google Scholar

    Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 240702Google Scholar

    [9]

    Whiddon R, Zhou B, Borggren J, Alden M, Li Z S 2015 Rev. Sci. Instrum. 86 93107Google Scholar

    [10]

    Malmqvist E, Borggren J, Alden M, Bood J 2019 Appl. Opt. 58 1128Google Scholar

    [11]

    瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云 2015 物理学报 64 123301Google Scholar

    Qu P B, Guan X W, Zhang Z R, Wang S, Li G H, Ye J F, Hu Z Y 2015 Acta Phys. Sin. 64 123301Google Scholar

    [12]

    Luers A, Salhlberg A, Hochgreb S, Ewart P 2018 Appl. Phys. B-Lasers O. 124 1Google Scholar

    [13]

    Yuen F T C, Gülder Ö L 2009 Proc. Combust. Inst. 32 1747Google Scholar

    [14]

    Butterworth T D, Amyay B, Bekerom D V D, Steeg A V D, Minea T, Gatti N, Ong Q, Richard C, Kruijsdijk C, Smits J T, Bavel A P, Boudon V, Rooij G J 2019 J. Quant. Spectrosc. Radiat. Transfer 236 106562Google Scholar

    [15]

    任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 16 164201Google Scholar

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 16 164201Google Scholar

    [16]

    Cantu L M L, Grohmann J, Meier W, Aigner M 2018 Exp. Therm. Fluid Sci. 95 52Google Scholar

    [17]

    Lowe A, Thomas L M, Satija A, Lucht R P, Masri A R 2019 Proc. Combust. Inst. 37 1383Google Scholar

    [18]

    Nishihara M, Freund J B, Glumac N G, Ellott G S 2018 Plasma Sources Sci. Technol. 27 35012Google Scholar

    [19]

    Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar

    [20]

    Théberge F, Liu W, Simard P T, Becker A, Chin S L 2006 Phys. Rev. E 74 36406Google Scholar

    [21]

    Li B, Zhang D Y, Li X F, Gao Q, Zhu Z F, Li Z S 2018 J. Phys. D: Appl. Phys. 51 295102Google Scholar

    [22]

    Gao Q, Zhang D Y, Li X F, Li B, Li Z S 2019 Sens. Actuators, A 287 138Google Scholar

    [23]

    Li B, Zhang D Y, Gao Q, Li Z S 2020 Exp. Fluids 61 33Google Scholar

    [24]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [25]

    Liu Y, Durand M, Chen S, Houard A, Prade B, Forstier B, Mysyrowicz A 2010 Phys. Rev. Lett. 105 55003Google Scholar

    [26]

    Couairon A 2003 Appl. Phys. B-Lasers O. 76 789Google Scholar

    [27]

    Nibbering E T J, Grillon G, Franco M A, Prade B S, Mysyrowicz A 1997 J. Opt. Soc. Am. B: Opt. Phys. 14 650Google Scholar

    [28]

    Rabenstein F, Leipertz A 1997 Appl. Opt. 36 6989Google Scholar

  • [1] 潘鹏晖, 吉鹏飞, 林根, 董希明, 赵晋晖. 飞秒激光加工熔融石英的理论和实验研究. 物理学报, 2022, 71(24): 247901. doi: 10.7498/aps.71.20221496
    [2] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [3] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [4] 宋云菲, 王贞福, 李特, 杨国文. 808 nm半导体激光芯片电光转换效率的温度特性机理研究. 物理学报, 2017, 66(10): 104202. doi: 10.7498/aps.66.104202
    [5] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [6] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究. 物理学报, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [7] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [8] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [9] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [10] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异. 物理学报, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [11] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [12] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究. 物理学报, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [13] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变. 物理学报, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [14] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 束缚高压强气体中成丝的空心毛细管芯径对光谱展宽的影响. 物理学报, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [16] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [17] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [18] 林景全, 张杰, 李英骏, 陈黎明, 吕铁铮, 滕浩. 原子团簇对飞秒激光的吸收. 物理学报, 2001, 50(3): 457-461. doi: 10.7498/aps.50.457
    [19] 文双春, 范滇元. 增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究. 物理学报, 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
    [20] 唐永建, 赵永宽, 蒋伟阳, 朱正和, 刘元琼. 等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布(已撤稿). 物理学报, 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
计量
  • 文章访问数:  7390
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-07-13
  • 上网日期:  2020-11-20
  • 刊出日期:  2020-12-05

/

返回文章
返回