搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InP中点缺陷迁移机制的第一性原理计算

闫丽彬 白雨蓉 李培 柳文波 何欢 贺朝会 赵小红

引用本文:
Citation:

InP中点缺陷迁移机制的第一性原理计算

闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红
cstr: 32037.14.aps.73.20240754

First-principles calculations of point defect migration mechanisms in InP

Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong
cstr: 32037.14.aps.73.20240754
PDF
HTML
导出引用
  • 磷化铟作为重要的第二代半导体材料, 具有禁带宽度大、电子迁移率高、光电转换效率高、抗辐照性能强等优点, 是制备航天器电子器件优良材料之一. 但空间辐射粒子在磷化铟电子器件中会产生点缺陷, 导致其电学性能发生严重下降. 本文采用第一性原理方法对磷化铟中点缺陷的稳态结构进行研究, 并计算了最近邻位点的缺陷迁移能. 通过构建不同电荷态点缺陷的稳态结构, 发现了4种稳态结构的铟间隙和3种稳态结构磷间隙. 研究空位点缺陷的迁移过程, 发现磷空位比铟空位迁移能高, 同时带电空位点缺陷迁移能高于中性空位. 对于间隙点缺陷迁移过程的研究发现, 相较于空位点缺陷, 间隙点缺陷迁移能更小. 在不同电荷态的铟间隙迁移过程计算中, 发现了两种不同的迁移过程. 计算磷间隙的迁移过程, 发现了特殊的中间态结构引起多路径迁移情况. 研究结果有助于深入了解磷化铟材料中缺陷的形成机制和迁移行为, 对于设计和制造空间环境中长期稳定运行的磷化铟器件有重要意义.
    As an important second-generation semiconductor material, indium phosphide (InP) possesses excellent advantages such as a wide bandgap, high electron mobility, high photoelectric conversion efficiency, and strong radiation resistance. It is considered an excellent material for electronic devices in aerospace applications. However, point defects generated by space radiation particles in InP electronic devices can cause their electrical performance to degrade severely. In this study, first-principles calculations are employed to investigate the stable structures of point defects in InP and calculate the migration energy values of nearest-neighbor defects. Four stable structures of In vacancies and three stable structures of P vacancies are identified by constructing the stable structures of point defects in different charge states. The migration process of vacancy defects is studied, revealing that the migration energy of P vacancies is higher than that of In vacancies. Moreover, charged vacancy defects exhibit higher migration energy values than neutral vacancies. Regarding the migration process of interstitial defects, it is found that the migration energy of interstitial defects is smaller than that of vacancy defects. In the calculation of In interstitial migration process with different charge states, two different migration processes are found. Besides, during the migration calculations of P interstitial, a special intermediate state is discovered, resulting in multiple paths migrating to the nearest-neighbor position in the migration energy barrier diagram. The research results are helpful to understand the formation mechanism and migration behavior of defects in InP materials, and are important in designing and manufacturing InP devices with long-term stable operation in space environment.
      通信作者: 柳文波, liuwenbo@xjtu.edu.cn ; 何欢, huanhe@xjtu.edu.cn ; 贺朝会, hechaohui@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104260)资助的课题.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn ; He Huan, huanhe@xjtu.edu.cn ; He Chao-Hui, hechaohui@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104260).
    [1]

    Mokkapati S, Jagadish C 2009 Mater. Today 12 22Google Scholar

    [2]

    Beling A, Campbell J C 2009 J. Lightwave Technol. 27 343Google Scholar

    [3]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [4]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [5]

    Rathi S, Jogi J, Gupta M, Gupta R S 2009 Microelectron. Reliab. 49 1508Google Scholar

    [6]

    Bauer S, Sichkovskyi V, Schnabel F, Sengül A, Reithmaier J P 2019 J. Cryst. Growth 516 34Google Scholar

    [7]

    Shamirzaev T S, Debus J, Abramkin D S, Dunker D, Yakovlev D R, Dmitriev D V, Gutakovskii A K, Braginsky L S, Zhuravlev K S, Bayer M 2011 Phys. Rev. B 84 155318Google Scholar

    [8]

    Mehrer H 2007 Diffusion in Solids (Berlin, Heidelberg: Springer Verlag

    [9]

    Wright A F, Modine N A 2016 J. Appl. Phys. 120 215705Google Scholar

    [10]

    Wampler W R, Myers S M 2015 J. Appl. Phys. 117 045707Google Scholar

    [11]

    Myers S M, Cooper P J, Wampler W R 2008 J. Appl. Phys. 104 044507Google Scholar

    [12]

    贺朝会, 唐杜, 李永宏, 臧航 2019 原子能科学技术 53 2106Google Scholar

    He C H, Tang D, Li Y H, Zang H 2019 At. Energy Sci. Technol. 53 2106Google Scholar

    [13]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209Google Scholar

    [14]

    Ogura M, Mizuta M, Onaka K, Kukimoto H 1983 Jpn. J. Appl. Phys. 22 1502Google Scholar

    [15]

    Tapster P R 1983 J. Cryst. Growth 64 200Google Scholar

    [16]

    Rybicki G C, Zorman C A 1994 J. Appl. Phys. 75 3187Google Scholar

    [17]

    Walters R J, Summers G P 1991 J. Appl. Phys. 69 6488Google Scholar

    [18]

    Ando K, Yamaguchi M, Uemura C 1986 Phys. Rev. B 34 3041Google Scholar

    [19]

    McAfee S R, Capasso F, Lang D V, Hutchinson A, Bonner W A 1981 J. Appl. Phys. 52 6158Google Scholar

    [20]

    Liu J, Song Y, Xu X, Li W, Yang J, Li X 2023 J. Appl. Phys. 134 115702Google Scholar

    [21]

    Mishra R, Restrepo O D, Kumar A, Windl W 2012 J. Mater. Sci. 47 7482Google Scholar

    [22]

    Zollo G, Gala F 2012 New J. Phys. 14 053036Google Scholar

    [23]

    El-Mellouhi F, Mousseau N 2006 Phys. Rev. B 74 205207Google Scholar

    [24]

    Levasseur-Smith K, Mousseau N 2008 J. Appl. Phys. 103 113502Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Basic Parameters of Indium Phosphide (InP) https://www.ioffe.ru/SVA/NSM/Semicond/InP/basic.html [2024-04-04]

    [29]

    Pluengphon P, Bovornratanaraks T, Pinsook U 2017 J. Alloys Compd. 700 98Google Scholar

    [30]

    Bastos C M O, Sabino F P, Sipahi G M, Da Silva J L F 2018 J. Appl. Phys. 123 065702Google Scholar

    [31]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin, Heidelberg: Springer Press) p647

    [32]

    Malouin M A, El-Mellouhi F, Mousseau N 2007 Phys. Rev. B 76 045211Google Scholar

    [33]

    Schultz P A, von Lilienfeld O A 2009 Modell. Simul. Mater. Sci. Eng. 17 0840007Google Scholar

  • 图 1  InP中不同本征点缺陷稳定结构(红色为In原子, 灰色为P原子, 深蓝色为In/P间隙原子) (a) VIn; (b) VP; (c) Ini; (d) Pi

    Fig. 1.  Stable structures of different intrinsic point defects in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In/P interstitial atoms): (a) VIn; (b) VP; (c) Ini; (d) Pi.

    图 2  InP不同带电点缺陷稳定结构(红色为In原子, 灰色为P原子, 深蓝色为In/P间隙原子) (a) ${\text{V}}_{{\text{In}}}^{ - {3}}$; (b) ${\text{V}}_{\text{P}}^ + $; (c) $ {\text{P}}^{+}_{\text{i}} $; (d) $ {\text{In}}_{\text{i}}^{+} $; (e) $ {\text{P}}_{\text{i}}^{{\text{+3}}} $; (f) $ {\text{In}}_{\text{i}}^{{\text{+3}}} $

    Fig. 2.  Stable structures of different charged point defects in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In/P interstitial atoms): (a) ${\text{V}}_{{\text{In}}}^{ - {3}}$; (b) ${\text{V}}_{\text{P}}^ + $; (c) $ {\text{P}}^{+}_{\text{i}} $; (d) $ {\text{In}}_{\text{i}}^{+} $; (e) $ {\text{P}}_{\text{i}}^{{\text{+3}}} $; (f) $ {\text{In}}_{\text{i}}^{{\text{+3}}} $.

    图 3  InP中不同In空位点缺陷迁移能垒图(红色为In原子, 灰色为P原子, 黄色为迁移的In原子, 绿色为迁移的P原子) (a) VIn; (b) ${\text{V}}_{{\text{In}}}^{ - {3}}$

    Fig. 3.  Migration energy barrier diagram for different In vacancy defects in InP (red balls denote In atoms, gray balls denote P atoms, the yellow ball denote the migrating In atom and the green ball is the migrating P atom): (a) VIn; (b) ${\text{V}}_{{\text{In}}}^{ - {3}}$.

    图 4  InP中不同P空位点缺陷迁移能垒图(红色为In原子, 灰色为P原子, 黄色为迁移的In原子, 绿色为迁移的P原子) (a) VP; (b) ${\text{V}}_{\text{P}}^ + $

    Fig. 4.  Migration energy barrier diagram for different P vacancy defects in InP (red balls denote In atoms, gray balls denote P atoms and the green ball is the migrating P atom): (a) VP; (b) ${\text{V}}_{\text{P}}^ + $.

    图 5  InP中${\rm In}^{+3}_{\rm i} $迁移能垒图(红色为In原子, 灰色为P原子, 深蓝色为In间隙原子) (a) 迁移能垒图; (b) 能垒图各结构相对位置

    Fig. 5.  ${\rm In}^{+3}_{\rm i} $ point defect migration energy barrier diagram in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In interstitial atoms): (a) Migration energy barrier diagram; (b) relative positions of structures in energy barrier diagram.

    图 6  InP中$ {\text{In}}_{\text{i}}^{+} $迁移能垒图(红色为In原子, 灰色为P原子, 深蓝色为In间隙原子) (a) 迁移能垒图; (b) 能垒图各结构相对位置

    Fig. 6.  $ {\text{In}}_{\text{i}}^{+} $ point defect migration energy barrier diagram in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In interstitial atoms): (a) Migration energy barrier diagram; (b) relative positions of structures in energy barrier diagram.

    图 7  InP中$ {\text{P}}_{\text{i}}^{{\text{+3}}} $迁移能垒图(红色为In原子, 灰色为P原子, 深蓝色为P间隙原子) (a) 迁移能垒图; (b) 迁移路径峰值对应结构

    Fig. 7.  Migration energy barrier diagram for $ {\text{P}}_{\text{i}}^{{\text{+3}}} $ point defect in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote P interstitial atoms): (a) Migration energy barrier diagram; (b) peak corresponding structures.

    表 1  不同方法计算的InP弹性性质的理论与实验值对比

    Table 1.  Comparison of theoretical and experimental values of InP’s elastic properties calculated by different methods.

    本工作PBE[29]PBE[30]实验
    C11/GPa86.086.887.4101[31]
    C12/GPa46.645.545.956[31]
    C44/GPa41.642.041.946[31]
    B0/GPa59.759.359.771
    下载: 导出CSV

    表 2  不同本征点缺陷稳定结构体系能量和缺陷形成能汇总表

    Table 2.  Summary table of energy and formation energy for different intrinsic point defect stable structural systems.

    缺陷种类 结构 单位原子能量
    /(eV·atom–1)
    缺陷形成能
    /eV
    VIn –4.150 4.176/4.18[21]
    VP –4.158 2.412/2.33[21]
    Ini Td In –4.201 3.453
    Td P –4.202 3.366/3.366[21]
    100-split[In-P] –4.196 4.249
    100-split[In-In] –4.189 5.191
    Pi C3v h –4.220 3.622
    C1hp 001In –4.222 3.336
    D2d 001P –4.224 3.124/3.1[21]
    下载: 导出CSV
  • [1]

    Mokkapati S, Jagadish C 2009 Mater. Today 12 22Google Scholar

    [2]

    Beling A, Campbell J C 2009 J. Lightwave Technol. 27 343Google Scholar

    [3]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [4]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [5]

    Rathi S, Jogi J, Gupta M, Gupta R S 2009 Microelectron. Reliab. 49 1508Google Scholar

    [6]

    Bauer S, Sichkovskyi V, Schnabel F, Sengül A, Reithmaier J P 2019 J. Cryst. Growth 516 34Google Scholar

    [7]

    Shamirzaev T S, Debus J, Abramkin D S, Dunker D, Yakovlev D R, Dmitriev D V, Gutakovskii A K, Braginsky L S, Zhuravlev K S, Bayer M 2011 Phys. Rev. B 84 155318Google Scholar

    [8]

    Mehrer H 2007 Diffusion in Solids (Berlin, Heidelberg: Springer Verlag

    [9]

    Wright A F, Modine N A 2016 J. Appl. Phys. 120 215705Google Scholar

    [10]

    Wampler W R, Myers S M 2015 J. Appl. Phys. 117 045707Google Scholar

    [11]

    Myers S M, Cooper P J, Wampler W R 2008 J. Appl. Phys. 104 044507Google Scholar

    [12]

    贺朝会, 唐杜, 李永宏, 臧航 2019 原子能科学技术 53 2106Google Scholar

    He C H, Tang D, Li Y H, Zang H 2019 At. Energy Sci. Technol. 53 2106Google Scholar

    [13]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209Google Scholar

    [14]

    Ogura M, Mizuta M, Onaka K, Kukimoto H 1983 Jpn. J. Appl. Phys. 22 1502Google Scholar

    [15]

    Tapster P R 1983 J. Cryst. Growth 64 200Google Scholar

    [16]

    Rybicki G C, Zorman C A 1994 J. Appl. Phys. 75 3187Google Scholar

    [17]

    Walters R J, Summers G P 1991 J. Appl. Phys. 69 6488Google Scholar

    [18]

    Ando K, Yamaguchi M, Uemura C 1986 Phys. Rev. B 34 3041Google Scholar

    [19]

    McAfee S R, Capasso F, Lang D V, Hutchinson A, Bonner W A 1981 J. Appl. Phys. 52 6158Google Scholar

    [20]

    Liu J, Song Y, Xu X, Li W, Yang J, Li X 2023 J. Appl. Phys. 134 115702Google Scholar

    [21]

    Mishra R, Restrepo O D, Kumar A, Windl W 2012 J. Mater. Sci. 47 7482Google Scholar

    [22]

    Zollo G, Gala F 2012 New J. Phys. 14 053036Google Scholar

    [23]

    El-Mellouhi F, Mousseau N 2006 Phys. Rev. B 74 205207Google Scholar

    [24]

    Levasseur-Smith K, Mousseau N 2008 J. Appl. Phys. 103 113502Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Basic Parameters of Indium Phosphide (InP) https://www.ioffe.ru/SVA/NSM/Semicond/InP/basic.html [2024-04-04]

    [29]

    Pluengphon P, Bovornratanaraks T, Pinsook U 2017 J. Alloys Compd. 700 98Google Scholar

    [30]

    Bastos C M O, Sabino F P, Sipahi G M, Da Silva J L F 2018 J. Appl. Phys. 123 065702Google Scholar

    [31]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin, Heidelberg: Springer Press) p647

    [32]

    Malouin M A, El-Mellouhi F, Mousseau N 2007 Phys. Rev. B 76 045211Google Scholar

    [33]

    Schultz P A, von Lilienfeld O A 2009 Modell. Simul. Mater. Sci. Eng. 17 0840007Google Scholar

  • [1] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [3] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [4] 刘汝霖, 方粮, 郝跃, 池雅庆. 金红石TiO2中本征缺陷扩散性质的第一性原理计算. 物理学报, 2018, 67(17): 176101. doi: 10.7498/aps.67.20180818
    [5] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [6] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [7] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] 何旭, 何林, 唐明杰, 徐明. 第一性原理研究空位点缺陷对高压下LiF的电子结构和光学性质的影响. 物理学报, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [9] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [10] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [11] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [12] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [13] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [14] 赵有文, 董志远. InP中深能级缺陷的产生与抑制现象. 物理学报, 2007, 56(3): 1476-1479. doi: 10.7498/aps.56.1476
    [15] 晋芳伟, 任忠鸣, 任维丽, 邓 康, 钟云波. 强梯度磁场下金属熔体中析出相晶粒迁移的动力学研究. 物理学报, 2007, 56(7): 3851-3860. doi: 10.7498/aps.56.3851
    [16] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [17] 赵有文, 苗杉杉, 董志远, 吕小红, 邓爱红, 杨 俊, 王 博. 磷化铟中铁原子替位与填隙的热致转变及其对材料性质的影响. 物理学报, 2007, 56(9): 5536-5541. doi: 10.7498/aps.56.5536
    [18] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [19] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [20] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
计量
  • 文章访问数:  1546
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-07-14
  • 上网日期:  2024-08-23
  • 刊出日期:  2024-09-20

/

返回文章
返回