搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续波腔衰荡光谱技术中模式筛选的数值方法

王金舵 余锦 貊泽强 何建国 代守军 孟晶晶 王晓东 刘洋

引用本文:
Citation:

连续波腔衰荡光谱技术中模式筛选的数值方法

王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋

Numerical methods of mode selection in continuous-wave cavity ring-down spectroscopy

Wang Jin-Duo, Yu Jin, Mo Ze-Qiang, He Jian-Guo, Dai Shou-Jun, Meng Jing-Jing, Wang Xiao-Dong, Liu Yang
PDF
HTML
导出引用
  • 连续波腔衰荡光谱(CW-CRDS)测量中多模衰荡的产生是严重影响痕量气体测量灵敏度的重要因素. 本文针对衰荡腔内无光阑或光阑滤模不彻底的CRDS装置, 通过分析腔误调时的能量耦合规律以及受关断时间影响的衰荡过程, 提出阈值选择和拟合度判定两种非光阑模式筛选方法, 利用数值方法达到抑制多模衰荡及筛选基模衰荡(优衰荡)的目的. 首先对CW-CRDS实验中平均采样和单次采样模式下出现的多种衰荡类型进行了归纳分析, 发现可以通过单次采样数据预测多次采样的测量结果, 实验结果与预期一致. 解决了CRDS实验“平均”和“拟合”的先后顺序问题. 在此基础上, 利用优衰荡出现概率满足二项分布模型的特性, 建立了优衰荡出现频率随触发阈值变化的概率模型, 用于选择合适的触发阈值. 实验表明提升触发阈值可以有效地抑制多模衰荡, 使测量灵敏度提升约一个数量级. 随着触发阈值的提升, 通过优衰荡得到的Allan方差将趋于一个定值, 但是衰荡过程获取时间将逐渐延长. 因此, 在CW-CRDS检测中触发阈值应设置在保证全部衰荡过程均为优衰荡的最小阈值处. 之后, 采用拟合度判定法对实验数据进行了筛选. 最后给出了两种方法的适用范围, 拟合度判定法虽然简单但局限性较大, 阈值选择法可适用于腔误调程度不严重的情况.
    In continuous-wave cavity ring-down spectroscopy (CW-CRDS), the measurement sensitivity is seriously affected by the multimode excitations in the ring-down cavity. The using of an intracavity aperture is a common way to restrain the excitation of high-order modes, thus leading the laser power to additionally lose and the signal-to-noise ratio to degrade. In this paper, two numerical methods, named “trigger threshold method” and “curve fitness method”, are proposed for selecting the mode in which the decays excited by the high-order modes can be removed. The laser coupling efficiency between the incident laser and the oscillating fundamental or high-order modes is studied in a misadjusted ring-down cavity. It is found that with a misadjusted ring-down cavity, the laser energy is partially coupled into the high-order modes, and the coupling energy increases with the extent of the cavity misadjustment increasing. In this case, the ring-down decaying traces excited by these high-order modes are different from and much shorter than those excited by the fundamental mode, which are respectively called “bad decays” and “good decays” in this paper. Both the fundamental mode and the high-order modes can reach the threshold in the case of low triggering threshold selection and result in the components of both good and bad decays in the output ring-down curves. When the trigger threshold rises, the bad decays are effectively restrained by the deficient coupling into the high-order modes. Thus raising the trigger threshold is an effective method to restrain bad decays for the mode selection. Another approach is to consider the time spent on turning off the laser injection since the fitting goodness of good decays is better than that of bad decays. In this paper this characteristic is also used to separate the good decays from the bad ones. These two methods are demonstrated in the CW-CRDS experiments. The results show that the sensitivity of the CW-CRDS instrument can be greatly improved by one order of magnitude in the trigger threshold method with the minimum of Allan deviations gradually approaching to a constant, while the acquisition rate of the ring-down decays slows down with the increase of the trigger threshold. The results also explain the relationship between single sampling and averaged sampling, which presents an answer to the question about the sequence choice between averaging and fitting. A numerical model is proposed to estimate the probability of good decays versus the trigger threshold, which can be used to choose appropriate trigger threshold for CW-CRDS experiment. The applicable conditions and the limitations of these two methods in CW-CRDS for trace gas detection are also discussed in the paper.
      通信作者: 余锦, jinyu@aoe.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2018YFB0407400)、中国科学院科研装备研制项目(批准号:YJKYYQ20170035)和中国科学院光电研究院创新项目(批准号: Y70B15A13Y)资助的课题
      Corresponding author: Yu Jin, jinyu@aoe.ac.cn
    • Funds: Project supported by the National Key Research and Development Project of China (Grant No. 2018YFB0407400), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YJKYYQ20170035), and the Innovation Program of Academy of Opto-Electronics, Chinese Academy of Sciences (Grant No. Y70B15A13Y)
    [1]

    McCarren D, Scime E 2015 Rev. Sci. Instrum. 86 103505Google Scholar

    [2]

    胡纯栋, 焉镜洋, 王艳, 梁立振 2018 光谱学与光谱分析 38 346

    Hu C D, Yan J Y, Wang Y, Liang L Z 2018 Spectrosc. Spect. Anal. 38 346

    [3]

    Liu Y S, Zhou L X, Tans P P, Zang K P, Cheng S Y 2018 Sci. Total Environ. 633 1022Google Scholar

    [4]

    Miles N L, Martins D K, Richardson S J, Rella C W, Arata C, Lauvaux T, Davis K J, Barkley Z R, McKain K, Sweeney C 2018 Atmos. Meas. Tech. 11 1273

    [5]

    Li Z Y, Hu R Z, Xie P H, Chen H, Wu S Y, Wang F Y, Wang Y H, Ling L Y, Liu J G, Liu W Q 2018 Opt. Express 26 A433Google Scholar

    [6]

    Tan Y, Wang J, Zhao X Q, Liu A W, Hu S M 2017 J. Quant. Spectosc. Radiat. Transf. 187 274Google Scholar

    [7]

    Chen J, Hua T P, Tao L G, Sun Y R, Liu A W, Hu S M 2018 J. Quant. Spectosc. Radiat. Transf. 205 91Google Scholar

    [8]

    Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2017 Chin. Opt. Lett. 15 053101Google Scholar

    [9]

    Cui H, Li B C, Xiao S L, Han Y L, Wang J, Gao C M, Wang Y F 2017 Opt. Express 25 5807Google Scholar

    [10]

    Wahl E H, Tan S M, Koulikov S, Kharlamov B, Rella C R, Crosson E R, Paldus B A 2006 Opt. Express 14 1673Google Scholar

    [11]

    Karpf A, Qiao Y, Rao G N 2016 Appl. Opt. 55 4497Google Scholar

    [12]

    Berden G, Peeters R, Meijer G 2000 Int. Rev. Phys. Chem. 19 565Google Scholar

    [13]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [14]

    Romanini D, Kachanov A A, Stoeckel F 1997 Chem. Phys. Lett. 270 538Google Scholar

    [15]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316Google Scholar

    [16]

    Huang H F, Lehmann K K 2007 Opt. Express 15 8745

    [17]

    崔立红, 赵维宁, 颜昌翔 2015 物理学报 64 224211

    Cui L H, Zhao W N, Yan C X 2015 Acta Phys. Sin. 64 224211

    [18]

    Lehmann K K, Huang H F 2009 Frontiers of Molecular Spectroscopy (Amsterdam: Elsevier Science) p638

    [19]

    Grand Y L, Taché J P, Floch A L 1990 J. Opt. Soc. Am. B 7 1251

    [20]

    Sayeh M R, Bilger H R, Habib T 1985 Appl. Opt. 24 3756Google Scholar

    [21]

    Wójtewicz S, Cygan A, Domyslawska J, Bielska K, Morzyński P, Maslowski P, Ciurylo R, Lisak D 2018 Opt. Express 26 5644Google Scholar

    [22]

    谭中奇, 汪之国, 龙兴武 2007 光子学报 36 60

    Tan Z Q, Wang Z G, Long X W 2007 Acta Photon. Sin. 36 60

    [23]

    Wang J D, Yu J, Mo Z Q, He J G, Dai S J, Meng J J, Liu Y, Zhang X, Yi H 2019 Appl. Opt. 58 2773Google Scholar

  • 图 1  腔误调时高阶模功率耦合占比情况

    Fig. 1.  Proportion of higher-order cavity mode excitement in a misadjusted CRDS system.

    图 2  受有限的关断时间影响的衰荡曲线仿真

    Fig. 2.  Simulation of ring-down curves affected by the finite shutdown time.

    图 3  CW-CRDS实验装置图

    Fig. 3.  Schematic of CW-CRDS experimental instrument.

    图 4  四次平均模式下的(a)衰荡曲线、(b), (c)衰荡时间及(d)拟合度分布

    Fig. 4.  (a) Typical decays, (b), (c) distributions of ring-down time, and (d) decay curve fitness in four times averaged mode sampling.

    图 5  衰荡腔内存在多模激发

    Fig. 5.  Multimode excitation in ring-down cavity.

    图 6  单次采样的典型衰荡曲线

    Fig. 6.  Typical decays in single sampling.

    图 7  优衰荡出现频率随触发阈值的变化

    Fig. 7.  Variance of the frequency of good decays with trigger thresholds.

    图 8  不同阈值单次采样下的Allan方差图 (a) 10.7 mV; (b) 14.7 mV; (c) 18.7 mV; (d) 22.7 mV

    Fig. 8.  Allan deviations in single sampling with different trigger thresholds: (a) 10.7 mV; (b) 14.7 mV; (c) 18.7 mV; (d) 22.7 mV

    图 9  不同阈值下40个衰荡过程的Allan方差

    Fig. 9.  Allan deviations of 40 decays with different trigger thresholds.

    图 10  不同阈值的噪声等效吸收系数及测量灵敏度

    Fig. 10.  Noise equivalent absorption coefficients and sensitivities under different trigger thresholds.

    图 11  单次采样模式下的衰荡时间(a)及曲线调整拟合度(b)分布

    Fig. 11.  Distributions of ring-down times (a) and curve fitness (b) in single sampling.

  • [1]

    McCarren D, Scime E 2015 Rev. Sci. Instrum. 86 103505Google Scholar

    [2]

    胡纯栋, 焉镜洋, 王艳, 梁立振 2018 光谱学与光谱分析 38 346

    Hu C D, Yan J Y, Wang Y, Liang L Z 2018 Spectrosc. Spect. Anal. 38 346

    [3]

    Liu Y S, Zhou L X, Tans P P, Zang K P, Cheng S Y 2018 Sci. Total Environ. 633 1022Google Scholar

    [4]

    Miles N L, Martins D K, Richardson S J, Rella C W, Arata C, Lauvaux T, Davis K J, Barkley Z R, McKain K, Sweeney C 2018 Atmos. Meas. Tech. 11 1273

    [5]

    Li Z Y, Hu R Z, Xie P H, Chen H, Wu S Y, Wang F Y, Wang Y H, Ling L Y, Liu J G, Liu W Q 2018 Opt. Express 26 A433Google Scholar

    [6]

    Tan Y, Wang J, Zhao X Q, Liu A W, Hu S M 2017 J. Quant. Spectosc. Radiat. Transf. 187 274Google Scholar

    [7]

    Chen J, Hua T P, Tao L G, Sun Y R, Liu A W, Hu S M 2018 J. Quant. Spectosc. Radiat. Transf. 205 91Google Scholar

    [8]

    Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2017 Chin. Opt. Lett. 15 053101Google Scholar

    [9]

    Cui H, Li B C, Xiao S L, Han Y L, Wang J, Gao C M, Wang Y F 2017 Opt. Express 25 5807Google Scholar

    [10]

    Wahl E H, Tan S M, Koulikov S, Kharlamov B, Rella C R, Crosson E R, Paldus B A 2006 Opt. Express 14 1673Google Scholar

    [11]

    Karpf A, Qiao Y, Rao G N 2016 Appl. Opt. 55 4497Google Scholar

    [12]

    Berden G, Peeters R, Meijer G 2000 Int. Rev. Phys. Chem. 19 565Google Scholar

    [13]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [14]

    Romanini D, Kachanov A A, Stoeckel F 1997 Chem. Phys. Lett. 270 538Google Scholar

    [15]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316Google Scholar

    [16]

    Huang H F, Lehmann K K 2007 Opt. Express 15 8745

    [17]

    崔立红, 赵维宁, 颜昌翔 2015 物理学报 64 224211

    Cui L H, Zhao W N, Yan C X 2015 Acta Phys. Sin. 64 224211

    [18]

    Lehmann K K, Huang H F 2009 Frontiers of Molecular Spectroscopy (Amsterdam: Elsevier Science) p638

    [19]

    Grand Y L, Taché J P, Floch A L 1990 J. Opt. Soc. Am. B 7 1251

    [20]

    Sayeh M R, Bilger H R, Habib T 1985 Appl. Opt. 24 3756Google Scholar

    [21]

    Wójtewicz S, Cygan A, Domyslawska J, Bielska K, Morzyński P, Maslowski P, Ciurylo R, Lisak D 2018 Opt. Express 26 5644Google Scholar

    [22]

    谭中奇, 汪之国, 龙兴武 2007 光子学报 36 60

    Tan Z Q, Wang Z G, Long X W 2007 Acta Photon. Sin. 36 60

    [23]

    Wang J D, Yu J, Mo Z Q, He J G, Dai S J, Meng J J, Liu Y, Zhang X, Yi H 2019 Appl. Opt. 58 2773Google Scholar

  • [1] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法. 物理学报, 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [2] 何星, 田中州, 王帅, 杨平, 许冰. 基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究. 物理学报, 2023, 72(1): 014205. doi: 10.7498/aps.72.20221530
    [3] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [4] 何星, 田中州, 王帅, 杨平, 许冰. 基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221530
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 更正: 光学反馈线性腔衰荡光谱技术不确定性[物理学报 2022, 71(12): 124201]. 物理学报, 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [7] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [8] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [9] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案. 物理学报, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [10] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [11] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量. 物理学报, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [12] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [13] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [14] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [15] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [16] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究. 物理学报, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [17] 赵宏太, 柳晓军, 曹俊文, 彭良友, 詹明生. Ba原子6s6p1P1←6s6s1S0跃迁的光腔衰荡光谱. 物理学报, 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
    [18] 戴松涛, 张光寅, 张存洲. 一个普适的反射光谱灵敏度公式及其应用. 物理学报, 1994, 43(9): 1393-1403. doi: 10.7498/aps.43.1393
    [19] 潘少华. 关于腔内光谱机理和灵敏度的分析. 物理学报, 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
    [20] 吴钦义, 张和琪, 王彦顺. 利用CN振动带光谱及中色散攝谱仪测量碳弧温度和利用原子常数测量照象乳剂的相对光谱灵敏度. 物理学报, 1959, 15(4): 202-209. doi: 10.7498/aps.15.202
计量
  • 文章访问数:  7527
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 修回日期:  2019-09-12
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回