搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共心球透镜的多尺度广域高分辨率计算成像系统设计

刘飞 魏雅喆 韩平丽 刘佳维 邵晓鹏

引用本文:
Citation:

基于共心球透镜的多尺度广域高分辨率计算成像系统设计

刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏

Design of monocentric wide field-of-view and high-resolution computational imaging system

Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng
PDF
HTML
导出引用
  • 针对实时广域高分辨率成像需求, 充分利用具有对称结构的多层共心球透镜视场大且各轴外视场成像效果一致性好的特点, 设计基于共心球透镜的多尺度广域高分辨率计算成像系统. 该系统基于计算成像原理, 通过构建像差优化函数获得光学系统设计参数, 结合球形分布的次级相机阵列进行全局性优化, 提高系统性能的同时有效简化光学设计过程、降低系统设计难度. 系统稳定性测试结果表明, 该成像系统的MTF (modulation transmission function)值在截止频率处接近衍射极限, 弥散斑均方根恒小于探测器像元尺寸, 整机实景实时成像效果良好, 无视觉可见畸变. 该系统不仅有效解决了传统成像中广域和高分辨率成像矛盾的问题, 而且为计算光学成像系统设计奠定了一定研究基础.
    Imaging systems with a wide field-of-view (FOV) and high-resolution, which can provide abundant target information, are always desired in various applications including target detection, environment monitoring, marine rescue, etc. Various approaches to realizing the wide FOV and high-resolution imaging have been developed, for example, fisheye lens imaging system, and panoramic optical annular staring imaging technology. In these single aperture imaging systems, the maximum resolution and FOV are determined by either the geometric aberration or the diffraction limit of the optics. Multi-scale monocentric ball-lens imaging system is of particular importance due to its high real-time ability, small image distortion, and wide FOV. The complete geometrical symmetry of multilayer monocentric ball-lens makes it possible to compensate for the geometric aberration with no need of additional assistance. However, the major problem in designing imaging system based on multi-scale monocentric ball-lens is that there are too many variables needed to be set for a ball-lens imaging structure and the problems of high time cost and computation complexity.For simplifying the design process, in this manuscript, we apply the computational imaging theory to optical system design, thereby developing a geometric aberration optimization function to determine the initial values of the desired system by the sound computation rather than repetitive iterations by using the optical system design software. Function development starts from the aberration theory. Since the monocentric ball lens does not bring in the aberrations relating to FOV, only spherical aberration and chromatic aberration are needed to be considered. The optimization function is then founded according to the principle of minimizing the spherical aberration and chromatic aberration. And then with the determined initial parameters, ZEMAX is employed to globally optimize the residual geometric aberrations, which is time-efficient. After required parameters are finally determined, the system performance is evaluated via the modulation transmission function, the spot diagram distribution, the field-curve and distortion value and the ray fan curve. Favorable results are obtained, which demonstrates the feasibility of the developed system designing approach. Imaging results from the finished prototype system are pretty satisfactory with wide FOV and high resolution which is captured through only one frame. The multi-scale wide FOV and high-resolution computation imaging system not only solves the conflict between the wide FOV and high resolution, but also provides the research foundation for computational imaging.
      通信作者: 邵晓鹏, xpshao@xidian.edu.cn
    • 基金项目: 中国博士后科学基金(批准号: 2017M613063)、中央高校基本科研业务费(批准号: JB170503)、中国科学院长春光学精密机械研究所应用光学国家重点实验室基金(批准号: CS16017050001)和国家自然科学基金青年科学基金(批准号: 61705175)资助的课题.
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2017M613063), the Fundamental Research Fund for the Central Universities, China (Grant No. JB170503), the State Key Laboratory of Optical Technology for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. CS16017050001), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705175).
    [1]

    Claire S K, Jeffrey R H, Timothy K L, Joi W, Raymond G F, Bryan Z, Takahiro I, Allen B, Seung J, John P C, Amit C, Markus W C, Tannishtha R 2016 Nat. Commun. 7 1

    [2]

    Jisoo K, Doo J P, Sun J B, Jaeho L, Soo B C, Seongjun P, Sung W H 2014 Opt. Express 22 31875Google Scholar

    [3]

    Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M, Feller S D 2012 Nature 486 386Google Scholar

    [4]

    Golish D R, Vera E M, Kelly K J, Gong Q, Jansen P A, Hughes J M, Kittle D S, Brady D J, Gehm M E 2012 Opt. Express 20 22048Google Scholar

    [5]

    闫阿奇, 祝青, 曹剑中, 周泗忠, 杨正, 刘宇波 2008 光子学报 37 1975

    Yan A Q, Zhu Q, Cao J Z, Zhou S Z, Yang Z, Liu Y B 2008 Acta Photon. Sin. 37 1975

    [6]

    Matthew J L, George B, Michael F 2012 Remote Sensing 4 3006Google Scholar

    [7]

    Wang X, Li L, Hou G Q 2016 Appl. Opt. 55 2580Google Scholar

    [8]

    Yu H, Wan Q H, Lu X R, Du Y C, Yang S W 2017 Appl. Opt. 56 755Google Scholar

    [9]

    Tremblay E J, Marks D L, Brady D J, Ford J E 2012 Appl. Opt. 51 4691Google Scholar

    [10]

    Wang S, Heidrich W 2004 Comput. Graphics Forum 23 441Google Scholar

    [11]

    Donggyun K, Jinho P, Joonki P 2014 Opt. Lett. 39 6261Google Scholar

    [12]

    Antonino F, Giovanni M F, Arcangelo R B, Sebastiano B 2017 IEEE Trans. Image Process. 26 696Google Scholar

    [13]

    Mo Z, Robert H C, Juliet T G 2016 Opt. Express 21 23798

    [14]

    Huang Z, Bai J, Lu T X, Hou X Y 2013 Opt. Express 21 10810Google Scholar

    [15]

    Yan J L, Kong L S, Diao Z H, Liu X F, Zhu L L, Jia P 2018 Appl. Opt. 3 396

    [16]

    Lohmann A W 1989 Appl. Opt. 28 4996Google Scholar

    [17]

    Cossairt O S, Nayar S K 2010 Proceeding on 2010 IEEE International Conference on Computational Photography (ICCP) Pittsburgh, USA, March 29–30, 2010 p1

    [18]

    Brady D J, Hagen H 2009 Opt. Express 13 10659

    [19]

    Marks D L, Llull P R, Philips Z, Anderson J G, Feller S D, Vera E M, Son H S, Youn S, Kim J, Gehm M E, Brady D J, Nichols J M, Judd K P, Duncan M D, Waterman J R, Stack R A, Johnson A, Tennill R, Olson C C 2014 Appl. Opt. 53 C54Google Scholar

    [20]

    Patrick L, Lauren B, Zachary P, Kyle D, Marks D L, Brady D J 2015 Optica 2 1086Google Scholar

    [21]

    Cossairt O S, Miau D, Nayar S K 2011 J. Opt. Soc. Am. A 28 2540Google Scholar

    [22]

    Born M, Wolf E 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7nd Edition (Cambridge: Cambridge University Press) p210

    [23]

    Luke P L, Robert S 2005 Science 310 1148Google Scholar

    [24]

    Sasian J 2010 Appl. Opt. 49 D69Google Scholar

    [25]

    Lijun L, Yiqing C 2017 Appl. Opt. 56 8570Google Scholar

  • 图 1  基于共心球透镜的广域高分辨率成像原理图

    Fig. 1.  Schematic of monocentric wide field of view (FOV) and high-resolution computational imaging system.

    图 2  共心球透镜成像光路图

    Fig. 2.  Ray diagram of themonocentric multi-scale ball-lens.

    图 3  (a)共心球透镜二维成像结构图; (b)调制传递函数曲线图; (c)共心球透镜点列图; (d)共心球透镜光线像差图

    Fig. 3.  (a) Structure of the designed monocentric ball-lens; (b) MTF curves; (c) the spot diagram; (d) the ray fan curves.

    图 4  相邻小尺度相机视场重叠对应关系示意图

    Fig. 4.  Schematic showing the FOV overlapping betweenthe adjacent micro cameras.

    图 5  小尺度相机排布示意图

    Fig. 5.  Distribution of the small-scale micro camera.

    图 6  光学系统结构图

    Fig. 6.  Structure of the whole optical system.

    图 7  (a)系统MTF曲线图; (b)系统点列图; (c)系统场曲和畸变图; (d)系统光线像差图

    Fig. 7.  (a) MTF curves of the whole system; (b) the spot diagram; (c) the field-curve and distortion; (d) the ray fan of the system.

    图 8  不同公差分配时的MTF叠加曲线

    Fig. 8.  MTF curves at different tolerance values.

    图 9  多尺度广域高分辨率计算成像系统结构图

    Fig. 9.  Prototype of the multi-scale wide FOV high-resolution computational imaging system.

    图 10  (a)测试平台结构示意图; (b)测试平台实物; (c)靶标板图像; (d)分辨率图案参数表

    Fig. 10.  (a) Test platform structure diagram; (b) test platform; (c) the image of target plate; (d) resolution pattern parameters table

    图 11  系统成像效果图(部分)

    Fig. 11.  Imaging results of the designed system (partial result).

    表 1  共心球透镜初始结构参数

    Table 1.  Structural parameters of the monocentric ball-lens.

    面序号曲率半径/mm厚度/mm玻璃半口径/mm
    156.9031.89H-ZF1251.516
    225.0125.01H-BAK823.238
    STOInfinity32.20H-BAK86.4240
    4–32.2024.70H-ZF1228.975
    5–56.9040.13550.247
    下载: 导出CSV
  • [1]

    Claire S K, Jeffrey R H, Timothy K L, Joi W, Raymond G F, Bryan Z, Takahiro I, Allen B, Seung J, John P C, Amit C, Markus W C, Tannishtha R 2016 Nat. Commun. 7 1

    [2]

    Jisoo K, Doo J P, Sun J B, Jaeho L, Soo B C, Seongjun P, Sung W H 2014 Opt. Express 22 31875Google Scholar

    [3]

    Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M, Feller S D 2012 Nature 486 386Google Scholar

    [4]

    Golish D R, Vera E M, Kelly K J, Gong Q, Jansen P A, Hughes J M, Kittle D S, Brady D J, Gehm M E 2012 Opt. Express 20 22048Google Scholar

    [5]

    闫阿奇, 祝青, 曹剑中, 周泗忠, 杨正, 刘宇波 2008 光子学报 37 1975

    Yan A Q, Zhu Q, Cao J Z, Zhou S Z, Yang Z, Liu Y B 2008 Acta Photon. Sin. 37 1975

    [6]

    Matthew J L, George B, Michael F 2012 Remote Sensing 4 3006Google Scholar

    [7]

    Wang X, Li L, Hou G Q 2016 Appl. Opt. 55 2580Google Scholar

    [8]

    Yu H, Wan Q H, Lu X R, Du Y C, Yang S W 2017 Appl. Opt. 56 755Google Scholar

    [9]

    Tremblay E J, Marks D L, Brady D J, Ford J E 2012 Appl. Opt. 51 4691Google Scholar

    [10]

    Wang S, Heidrich W 2004 Comput. Graphics Forum 23 441Google Scholar

    [11]

    Donggyun K, Jinho P, Joonki P 2014 Opt. Lett. 39 6261Google Scholar

    [12]

    Antonino F, Giovanni M F, Arcangelo R B, Sebastiano B 2017 IEEE Trans. Image Process. 26 696Google Scholar

    [13]

    Mo Z, Robert H C, Juliet T G 2016 Opt. Express 21 23798

    [14]

    Huang Z, Bai J, Lu T X, Hou X Y 2013 Opt. Express 21 10810Google Scholar

    [15]

    Yan J L, Kong L S, Diao Z H, Liu X F, Zhu L L, Jia P 2018 Appl. Opt. 3 396

    [16]

    Lohmann A W 1989 Appl. Opt. 28 4996Google Scholar

    [17]

    Cossairt O S, Nayar S K 2010 Proceeding on 2010 IEEE International Conference on Computational Photography (ICCP) Pittsburgh, USA, March 29–30, 2010 p1

    [18]

    Brady D J, Hagen H 2009 Opt. Express 13 10659

    [19]

    Marks D L, Llull P R, Philips Z, Anderson J G, Feller S D, Vera E M, Son H S, Youn S, Kim J, Gehm M E, Brady D J, Nichols J M, Judd K P, Duncan M D, Waterman J R, Stack R A, Johnson A, Tennill R, Olson C C 2014 Appl. Opt. 53 C54Google Scholar

    [20]

    Patrick L, Lauren B, Zachary P, Kyle D, Marks D L, Brady D J 2015 Optica 2 1086Google Scholar

    [21]

    Cossairt O S, Miau D, Nayar S K 2011 J. Opt. Soc. Am. A 28 2540Google Scholar

    [22]

    Born M, Wolf E 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7nd Edition (Cambridge: Cambridge University Press) p210

    [23]

    Luke P L, Robert S 2005 Science 310 1148Google Scholar

    [24]

    Sasian J 2010 Appl. Opt. 49 D69Google Scholar

    [25]

    Lijun L, Yiqing C 2017 Appl. Opt. 56 8570Google Scholar

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才. 简单光学成像技术及其研究进展. 物理学报, 2023, 72(8): 084205. doi: 10.7498/aps.72.20230092
    [6] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [7] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [8] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [12] 冯维, 张福民, 王惟婧, 曲兴华. 基于数字微镜器件的自适应高动态范围成像方法及应用. 物理学报, 2017, 66(23): 234201. doi: 10.7498/aps.66.234201
    [13] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [14] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [15] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] 温昌礼, 季家镕, 窦文华, 冯向华, 徐蓉, 门涛, 刘长海. 制备多模聚硅氧烷光波导关键技术的改进. 物理学报, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [18] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [19] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  9992
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-01-15
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回