搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字微镜器件的自适应高动态范围成像方法及应用

冯维 张福民 王惟婧 曲兴华

引用本文:
Citation:

基于数字微镜器件的自适应高动态范围成像方法及应用

冯维, 张福民, 王惟婧, 曲兴华

Adaptive high-dynamic-range imaging method and its application based on digital micromirror device

Feng Wei, Zhang Fu-Min, Wang Wei-Jing, Qu Xing-Hua
PDF
导出引用
  • 在结构光三维扫描测量中,强反射表面因编码结构光照射后易产生局部镜面反射的特性,引起相机曝光饱和,淹没了所要检测的表面几何特征信息.为解决强反射表面的视觉成像难题,基于数字微镜器件(digital micromirror device,DMD)具有调制入射光线空间信息的特性,本文提出一种基于DMD的自适应高动态范围成像方法.设计与搭建了一套新型可编程的计算成像系统,建立其光学系统模型,并实现了DMD微镜与CMOS像素的匹配与映射;分析了基于逐像素编码曝光的高动态范围成像原理,并设计了基于DMD的光强编码控制算法,实现对入射光线强度的自适应精确调制,从而使进入成像系统中的入射光强始终处于相机的合适曝光强度内.实验表明:该方法突破了普通数字相机的动态范围限制,能够精确地控制被测强反射表面各个区域的入射光线强弱,并实现了对强反射表面的局部过曝光区域的清晰成像.该研究成果将为从根源上解决强反射表面因局部过曝光造成的三维点云缺失问题提供重要的解决方案.
    In the three-dimensional (3D) scanning measurement based on structured light techniques, the strong reflection surface is easy to produce local specular reflection due to the illumination of the structured light, which will cause the camera to be over-exposed, and therefore the geometry information of strong reflection surface cannot be detected. Since the digital micromirror device (DMD) has the modulating characteristics of the spatial information of incident light, an adaptive high-dynamic-range imaging method based on DMD is proposed to solve the problem of visual imaging of strong reflection surface. Firstly, a novel and computational imaging system is designed and built, and its optical model is also established. Then, the matching and mapping methods between DMD micromirrors and CMOS pixels are described in detail and realized. Meanwhile, we analyze the theory of the high-dynamic-range imaging based on per-pixel coded exposure, and design a coding control algorithm of light intensity to achieve the adaptive precision modulation of the intensity of incident light, so that the incident light in the imaging system is always in appropriate exposure intensity. The experiments show that the method can break through the limited dynamic range of the ordinary digital camera, and accurately control the intensity of incident light in each region of the measured strong reflection surfaces, and thus it can obtain the high-quality images of the local over-exposure area of the strong reflection surface. More importantly, the research will provide a new solution to the problem of 3D point cloud loss caused by local over-exposure of the strong reflection surface.
      通信作者: 张福民, zhangfumin@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51775379,51675380)资助的课题.
      Corresponding author: Zhang Fu-Min, zhangfumin@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51775379, 51675380).
    [1]

    Srikantha A, Sidibé D 2012 Signal Process. 27 650

    [2]

    Wang C, Tu C 2014 Int. J. Signal Process. Image Process. Pattern Recognit. 7 217

    [3]

    Gu B, Li W, Wong J, Zhu M, Wang M 2012 J. Visual Commun. Image Represent. 23 604

    [4]

    Venkataraman K, Jabbi A S, Mullis R H 2015 US Patent 9 041 829[2015-05-26]

    [5]

    Ward G J, Seetzen H, Heidrich W 2012 US Patent 8 242 426[2012-08-14]

    [6]

    Brajovic V 2004 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA, June 2 2004 p189

    [7]

    Lai L W, Lai C H, King Y C 2004 IEEE Sens. J. 4 122

    [8]

    Ikebe M, Saito K 2007 IEEE Sens. J. 7 897

    [9]

    Zhou C, Nayar S K 2011 IEEE Trans. Image Proc. 20 3322

    [10]

    Mannami H, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y 2007 J. Visual Commun. Image Represent. 18 359

    [11]

    Li X, Sun C, Wang P 2015 Opt. Lasers Eng. 66 41

    [12]

    Yang Z, Wang P, Li X, Sun C 2014 Opt. Lasers Eng. 54 31

    [13]

    Dudley D, Duncan W M, Slaughter J 2003 Proc. SPIE-The International Society for Optical Engineering USA, January 20 2003 Vol. 4985

    [14]

    Zhang H, Cao L, Jin G 2017 Appl. Opt. 56 F138

    [15]

    Cheng J, Gu C, Zhang D, Wang D, Chen S C 2016 Opt. Lett. 41 1451

    [16]

    Qiao Y, Xu X, Liu T, Pan Y 2015 Appl. Opt. 54 60

    [17]

    Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2016 Acta Phys. Sin. 65 064201 (in Chinese)[李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2016 物理学报 65 064201]

    [18]

    Feng W, Zhang F, Wang W, Xing W, Qu X 2017 Appl. Opt. 56 3831

    [19]

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201

    [20]

    Feng W, Zhang F, Qu X, Zheng S 2016 Sensors 16 331

    [21]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940

    [22]

    Mackie C J, Candian A, Huang X, Lee T J, Tielens A 2015 J. Chem. Phys. 142 244107

  • [1]

    Srikantha A, Sidibé D 2012 Signal Process. 27 650

    [2]

    Wang C, Tu C 2014 Int. J. Signal Process. Image Process. Pattern Recognit. 7 217

    [3]

    Gu B, Li W, Wong J, Zhu M, Wang M 2012 J. Visual Commun. Image Represent. 23 604

    [4]

    Venkataraman K, Jabbi A S, Mullis R H 2015 US Patent 9 041 829[2015-05-26]

    [5]

    Ward G J, Seetzen H, Heidrich W 2012 US Patent 8 242 426[2012-08-14]

    [6]

    Brajovic V 2004 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA, June 2 2004 p189

    [7]

    Lai L W, Lai C H, King Y C 2004 IEEE Sens. J. 4 122

    [8]

    Ikebe M, Saito K 2007 IEEE Sens. J. 7 897

    [9]

    Zhou C, Nayar S K 2011 IEEE Trans. Image Proc. 20 3322

    [10]

    Mannami H, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y 2007 J. Visual Commun. Image Represent. 18 359

    [11]

    Li X, Sun C, Wang P 2015 Opt. Lasers Eng. 66 41

    [12]

    Yang Z, Wang P, Li X, Sun C 2014 Opt. Lasers Eng. 54 31

    [13]

    Dudley D, Duncan W M, Slaughter J 2003 Proc. SPIE-The International Society for Optical Engineering USA, January 20 2003 Vol. 4985

    [14]

    Zhang H, Cao L, Jin G 2017 Appl. Opt. 56 F138

    [15]

    Cheng J, Gu C, Zhang D, Wang D, Chen S C 2016 Opt. Lett. 41 1451

    [16]

    Qiao Y, Xu X, Liu T, Pan Y 2015 Appl. Opt. 54 60

    [17]

    Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2016 Acta Phys. Sin. 65 064201 (in Chinese)[李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2016 物理学报 65 064201]

    [18]

    Feng W, Zhang F, Wang W, Xing W, Qu X 2017 Appl. Opt. 56 3831

    [19]

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201

    [20]

    Feng W, Zhang F, Qu X, Zheng S 2016 Sensors 16 331

    [21]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940

    [22]

    Mackie C J, Candian A, Huang X, Lee T J, Tielens A 2015 J. Chem. Phys. 142 244107

  • [1] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究. 物理学报, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [2] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像:散射光场偏振特性的复用技术. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240268
    [3] 刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才. 简单光学成像技术及其研究进展. 物理学报, 2023, 72(8): 084205. doi: 10.7498/aps.72.20230092
    [4] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [5] 贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌. 中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析. 物理学报, 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [6] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [7] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐. 基于数字微镜器件的数字线扫描荧光显微成像技术. 物理学报, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [8] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [9] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [10] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建. 物理学报, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [11] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [12] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [13] 李正华, 李翔. 交变力磁力显微镜动态成像技术的研究. 物理学报, 2014, 63(17): 178503. doi: 10.7498/aps.63.178503
    [14] 王华英, 于梦杰, 江亚男, 宋修法, 朱巧芬, 刘飞飞. 利用小尺寸电荷耦合器件实现数字全息高分辨成像. 物理学报, 2013, 62(24): 244203. doi: 10.7498/aps.62.244203
    [15] 唐远河, 吴勇. 基于液晶和DSP的强光局部选通智能网络摄像系统研究. 物理学报, 2013, 62(21): 214210. doi: 10.7498/aps.62.214210
    [16] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构. 物理学报, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [17] 潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文. 微通道板的饱和效应对条纹相机动态范围的影响分析. 物理学报, 2012, 61(19): 194211. doi: 10.7498/aps.61.194211
    [18] 曹柱荣, 张海鹰, 董建军, 袁铮, 缪文勇, 刘慎业, 江少恩, 丁永坤. 高动态范围激光等离子体诊断系统及其在惯性约束聚变实验中的应用. 物理学报, 2011, 60(4): 045212. doi: 10.7498/aps.60.045212
    [19] 王德江, 匡海鹏. 模拟增益对电荷耦合器件信噪比与动态范围影响的实验研究. 物理学报, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [20] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统. 物理学报, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
计量
  • 文章访问数:  5844
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-01
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-12-05

/

返回文章
返回