搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计

黄一帆 邢阳光 沈文杰 彭吉龙 代树武 王颖 段紫雯 闫雷 刘越 李林

引用本文:
Citation:

亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计

黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林

Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer

Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin
PDF
HTML
导出引用
  • 狭缝式成像光谱仪是太阳极紫外光谱成像探测的重要工具之一, 然而目前国内尚无该类载荷, 导致太阳物理学和空间天气学等学科在极紫外光谱诊断研究方面主要依赖国外仪器数据, 严重制约了相关学科的发展. 国外已发射的成像光谱仪仅具有2''量级的空间分辨率, 很难观测到日冕加热模型预测的等离子体核心特征. 为了更好地理解太阳不同层次大气之间的耦合过程, 需要更宽光谱覆盖的太阳观测数据. 鉴于此, 本文提出并设计了一款亚角秒空间分辨的太阳极紫外宽波段成像光谱仪, 相比现有仪器, 系统能够实现更高空间和光谱分辨率、更宽光谱范围覆盖的观测. 性能评价结果表明, 系统在62—80 nm, 92—110 nm波段内的像元空间分辨率均优于0.4'', 光谱分辨率均优于0.007 nm, 光谱成像质量接近衍射极限, 对我国未来首台空间太阳极紫外成像光谱仪的研制具有重要参考价值.
    The slit imaging spectrometer is one of the important tools for solar extreme ultraviolet (EUV) spectral imaging detection. However, at present, there is no such instrument load in China. The research of solar physics and space weather in the field of EUV spectral diagnosis mainly depends on foreign instrument data, which seriously restricts the development of related disciplines. The spectral imaging instruments that have been launched internationally have only a spatial resolution of $2''$, and it is difficult to observe the core characteristics of the plasma related to the coronal heating mechanism predicted by the theoretical model. In order to better understand the coupling process between different layers of the sun’s atmosphere, solar physics research requires the observed data with wider spectral coverage. In light of this, we propose and design a sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer operating in a band range of 62–80 nm and 92–110 nm. Compared with the existing instruments, the system can achieve high spatial resolution and spectral resolution, and wide spectral range coverage. Performance evaluation results indicate that the imaging spectrometer’s spatial resolutions in both bands are better than 0.4'', and their spectral resolutions are both better than 0.007 nm, with spectral imaging quality approaching the diffraction limit. The system designed in this work holds significant reference value for developing the first Chinese space-based solar EUV spectroscopic instrument in the future.
      通信作者: 邢阳光, xyg@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62205027, 42274208)和中国科学院战略性先导科技专项(批准号: XDA15018300)资助的课题.
      Corresponding author: Xing Yang-Guang, xyg@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205027, 42274208) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15018300).
    [1]

    杨孟飞, 代树武, 王颖, 朱成林, 杨尚斌, 张也驰 2022 中国空间科学技术 42 1Google Scholar

    Yang M F, Dai S W, Wang Y, Zhu C L, Yang S B, Zhang Y C 2022 Chin. Space Sci. Technol. 42 1Google Scholar

    [2]

    颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅 2023 空间科学学报 43 199Google Scholar

    Yan Y H, Deng Y Y, Gan W Q, Ding M D, Tian H, Zhu X S 2023 Chin. J. Space Sci. 43 199Google Scholar

    [3]

    陈鹏飞 2021 中国科学: 物理学 力学 天文学 51 119632Google Scholar

    Chen P F 2021 Sci. Sin. -Phys. Mech. Astron. 51 119632Google Scholar

    [4]

    白先勇, 田晖, 邓元勇, 陈亚杰, 侯振永, 杨子浩, 张志勇, 段帷, 李文显, 郭思璠 2023 空间科学学报 43 406Google Scholar

    Bai X Y, Tian H, Deng Y Y, Chen Y J, Hou Z Y, Yang Z H, Zhang Z Y, Duan W, Li W X, Guo S F 2023 Chin. J. Space Sci. 43 406Google Scholar

    [5]

    Domingo V, Fleck B, Poland A I 1995 Sol. Phys. 162 1Google Scholar

    [6]

    Wilhelm K, Axford W I, Curdt W, Gabriel A H, Grewing M, Huber M C E, Jordan S D, Kuehne M, Lemaire P, Marsch E 1995 Sol. Phys. 162 189Google Scholar

    [7]

    Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys. 162 233Google Scholar

    [8]

    Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Sol. Phys. 243 3Google Scholar

    [9]

    Culhane J L, Harra L K, James A M, et al. 2007 Sol. Phys. 243 19Google Scholar

    [10]

    Brosius J W, Daw A N, Rabin D M 2014 Astrophys. J. 790 1Google Scholar

    [11]

    Müller D, St Cyr O C, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar

    [12]

    Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar

    [13]

    Marirrodriga C G, Pacros A, Strandmoe S, et al. 2021 Astron. Astrophys. 646 A121Google Scholar

    [14]

    Li C, Fang C, Li Z, et al. 2022 Sci. China-Phys. Mech. Astron. 65 289602Google Scholar

    [15]

    Gan W Q, Zhu C, Deng Y Y, et al. 2019 Res. Astron. Astrophys. 19 156Google Scholar

    [16]

    Zhang P, Hu X Q, Lu Q F, Zhu A J, Lin M Y, Sun L, Chen L, Xu N 2022 Adv. Atmos. Sci. 39 1Google Scholar

    [17]

    Chen B, Zhang X X, He L P, et al. 2022 Light-Sci. Appl. 11 329Google Scholar

    [18]

    Bai X Y, Tian H, Deng Y Y, et al. 2023 Res. Astron. Astrophys. 23 065014Google Scholar

    [19]

    Tian H 2017 Res. Astron. Astrophys. 17 3Google Scholar

    [20]

    Poletto L, Thomas R J 2004 Appl. Opt. 43 2029Google Scholar

    [21]

    Poletto L, Gasparotto A, Tondello G, Thomas R J 2004 UV and Gamma-Ray Space Telescope Systems Glasgow, United Kingdom, June 21–25, 2004 p898

    [22]

    Larruquert J I, Keski-Kuha R A M 2000 Appl. Opt. 39 1537Google Scholar

    [23]

    王丽辉, 何玲平, 王孝坤, 尼启良, 陈波 2008 光学精密工程 16 42Google Scholar

    Wang L H, He L P, Wang X K, Ni Q L, Chen B 2008 Opt. Precis. Eng. 16 42Google Scholar

    [24]

    汪毓明, 季海生, 王亚敏, 等 2020 中国科学: 技术科学 50 1243Google Scholar

    Wang Y M, Ji H S, Wang Y M, et al. 2020 Sci. Sin. Technol. 50 1243Google Scholar

    [25]

    林隽, 黄善杰, 李燕, 等 2021 空间科学学报 41 183Google Scholar

    Liu J, Huang S J, Li Y, et al. 2021 Chin. J. Space Sci. 41 183Google Scholar

    [26]

    季海生, 汪毓明, 汪景琇 2019 中国科学: 物理学 力学 天文学 49 059605Google Scholar

    Ji H S, Wang Y M, Wang J X 2019 Sci. Sin. Phys. Mech. Astron. 49 059605Google Scholar

    [27]

    杨孟飞, 汪景琇, 王赤, 等 2023 科学通报 68 859Google Scholar

    Yang M F, Wang J X, Wang C, et al. 2023 Chin. Sci. Bull. 68 859Google Scholar

    [28]

    邓元勇, 周桂萍, 代树武, 等 2023 科学通报 68 298Google Scholar

    Deng Y Y, Zhou G P, Dai S W, et al. 2023 Chin. Sci. Bull. 68 298Google Scholar

  • 图 1  太阳大气温度随表面高度变化曲线. 图上标注了本文设计的系统工作波段覆盖的极紫外强辐射谱线[19]

    Fig. 1.  Curve of solar atmospheric temperature versus surface height. The EUV strong emission lines covered by our design are marked on the figure[19].

    图 2  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪工作原理图

    Fig. 2.  Operation principal diagram of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer

    图 3  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪的光线追迹模型

    Fig. 3.  Ray-tracing model for sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    图 4  成像光谱仪系统的设计流程

    Fig. 4.  Design flow process for imaging spectrometer system

    图 5  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学布局图

    Fig. 5.  Optical layout of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    图 6  TVLS光栅 (a) 基底表面矢高图; (b) 刻线密度分布曲线图

    Fig. 6.  TVLS grating: (a) The substrate surface sag map; (b) the curve of the ruling density distribution.

    图 7  光线追迹结果 (a), (b) 不同离轴视场下RMS点列图半径随波长的变化; (c), (d) 不同波长下RMS点列图半径随视场的变化

    Fig. 7.  Ray tracing results: (a), (b) RMS spots radii versus wavelengths under different off-axis FOV; (c), (d) RMS spots radii versus FOV in the different wavelengths.

    图 8  光学系统在不同波长处的调制传递函数 (a) λ = 62 nm; (b) λ = 80 nm; (c) λ = 92 nm; (d) λ = 110 nm

    Fig. 8.  MTFs of optical system under different wavelengths: (a) λ = 62 nm; (b) λ = 80 nm; (c) λ = 92 nm; (d) λ = 110 nm.

    图 9  系统像元空间分辨率评价 (a) 垂直狭缝方向的像元空间分辨率; (b) 62—80 nm波段平行狭缝方向的像元空间分辨率; (c) 92—110 nm波段平行狭缝方向的像元空间分辨率

    Fig. 9.  System spatial plate scale evaluation: (a) Spatial plate scale perpendicular to the slit; (b) spatial plate scale parallel to the slit in 62–80 nm wavelengths; (c) spatial plate scale parallel to the slit in 92–110 nm wavelengths.

    图 10  系统光谱分辨率评价 (a) 62—80 nm波段的光谱分辨率; (b) 92—110 nm波段的光谱分辨率

    Fig. 10.  System spectral resolution evaluation: (a) Spectral resolution in 62–80 nm wavelengths; (b) spectral resolution in 92–110 nm wavelengths.

    图 11  反射膜层、滤光片、TVLS光栅效率和探测器量子效率随波长的变化曲线 (a) 热压B4C单层膜的反射率曲线; (b) 厚度为150 nm铝滤光片的透过率曲线; (c) 光栅效率; (d) 探测器量子效率

    Fig. 11.  Curves of reflective film, filter, TVLS grating efficiency and detector quantum efficiency change with wavelength: (a) Reflectance curve of hot-pressed B4C single-layer film; (b) transmission curve of Al filter with thickness of 150 nm; (c) grating efficiency; (d) detector quantum efficiency.

    图 12  系统有效面积随波长的变化曲线 (a) 本文设计的系统, 红色加粗的曲线为系统观测波段内的有效面积; (b) SPICE

    Fig. 12.  Curves of system effective area change with wavelength: (a) Our design, red bold curves represent the effective area within the observed wavelength range of the system; (b) SPICE.

    图 13  光谱(Smile)畸变和空间(Keystone)畸变 (a) 不同波长的Smile畸变; (b) 62—80 nm波段不同视场的Keystone畸变; (c) 92—110 nm波段不同视场的Keystone畸变

    Fig. 13.  Spectral (Smile) distortion and spatial (Keystone) distortion: (a) Smile distortion of different wavelengths; (b) Keystone distortion of different field of view in 62–80 nm wavelengths; (c) Keystone distortion of different field of view in 92–110 nm wavelengths.

    表 1  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪技术指标

    Table 1.  Specifications of the sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    Performance parameters Design values
    Satellite orbit Dawn-dusk solar
    synchronous orbit
    Entrance aperture/mm2 156 × 156
    Slit FOV/('' ) 4.8
    Wavelength range/nm 62—80 & 92—110 & 46—55 (2nd order)
    Spectral resolution/nm ≤ 0.007
    Spatial plate scale/(('' )·pixel–1) ≤ 0.5
    Spatial resolution/('' ) ≤ 1.0
    System focal length/mm 11000
    Optical volume/mm3 ≤ 2800 × 500 × 450
    Pixel size of detector/μm 15 (1536 × 1536)
    下载: 导出CSV

    表 2  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪技术指标和元件参数

    Table 2.  Specifications and optical element parameters of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    Specification
    Wavelength range@SW/nm 62—80
    Wavelength range@LW/nm 92—110 & 46—55
    (2nd order)
    Spectral resolution@SW/nm 0.00615
    Spectral resolution@LW/nm 0.00642
    Spatial plate scale
    @SW/(('' )·pixel–1)
    0.340(@71 nm)
    Spatial plate scale
    @LW/(('' )·pixel–1)
    0.382(@101 nm)
    System focal length/mm 11000
    Optical volume/mm3 2600 × 420 × 400
    Detector/μm 15 (1536 × 1536)
    Telescope design
    Aperture/mm2 156 × 156
    RT/mm 4320.025
    Conic –1
    $\varDelta $/mm 120
    Slit design
    Slits width/('' ) 0.28, 1, 2, 40
    Slits length/('' ) 288
    Raster coverage/('' ) ±144
    TVLS grating design
    m +1 order
    1/d0/mm–1 1500
    β 5.177×@SW;
    5.261×@LW
    i/(°) 0.909
    rA/mm 440.667
    R/mm 735.545
    ρ/mm 737.138
    b2 0.0349
    Groove density/(lines·mm–1) 1500 ± 4
    Ruling area/mm2 36 × 36
    Two independent detectors design
    Wavelength range/nm Tilt angle/(°)
    62—80 15.259
    92—110 17.824
    下载: 导出CSV

    表 3  系统关键元件的公差容限

    Table 3.  Tolerance limits of key components of the system.

    Component Tolerance items Values of tolerances
    Primary mirror Surface irregularity (RMS) λ/20
    (λ = 632.8 nm)
    Conic ±0.005
    Radius of curvature/mm ±3.6
    Microroughness (RMS)/nm 0.4
    Element decenter/μm ±50
    Element tilt/('' ) ±15
    TVLS grating Substrate irregularity (RMS) λ/30
    (λ = 632.8 nm)
    Line density/
    (groove·mm–1)
    ±0.65
    Radius of curvature/mm ±0.3
    Microroughness (RMS)/nm 0.8
    Element decenter/μm ±20
    Element tilt/('' ) ±60
    Slit
    assembly
    Element decenter/μm ±20
    Element tilt/(°) ±0.03
    下载: 导出CSV
  • [1]

    杨孟飞, 代树武, 王颖, 朱成林, 杨尚斌, 张也驰 2022 中国空间科学技术 42 1Google Scholar

    Yang M F, Dai S W, Wang Y, Zhu C L, Yang S B, Zhang Y C 2022 Chin. Space Sci. Technol. 42 1Google Scholar

    [2]

    颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅 2023 空间科学学报 43 199Google Scholar

    Yan Y H, Deng Y Y, Gan W Q, Ding M D, Tian H, Zhu X S 2023 Chin. J. Space Sci. 43 199Google Scholar

    [3]

    陈鹏飞 2021 中国科学: 物理学 力学 天文学 51 119632Google Scholar

    Chen P F 2021 Sci. Sin. -Phys. Mech. Astron. 51 119632Google Scholar

    [4]

    白先勇, 田晖, 邓元勇, 陈亚杰, 侯振永, 杨子浩, 张志勇, 段帷, 李文显, 郭思璠 2023 空间科学学报 43 406Google Scholar

    Bai X Y, Tian H, Deng Y Y, Chen Y J, Hou Z Y, Yang Z H, Zhang Z Y, Duan W, Li W X, Guo S F 2023 Chin. J. Space Sci. 43 406Google Scholar

    [5]

    Domingo V, Fleck B, Poland A I 1995 Sol. Phys. 162 1Google Scholar

    [6]

    Wilhelm K, Axford W I, Curdt W, Gabriel A H, Grewing M, Huber M C E, Jordan S D, Kuehne M, Lemaire P, Marsch E 1995 Sol. Phys. 162 189Google Scholar

    [7]

    Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys. 162 233Google Scholar

    [8]

    Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Sol. Phys. 243 3Google Scholar

    [9]

    Culhane J L, Harra L K, James A M, et al. 2007 Sol. Phys. 243 19Google Scholar

    [10]

    Brosius J W, Daw A N, Rabin D M 2014 Astrophys. J. 790 1Google Scholar

    [11]

    Müller D, St Cyr O C, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar

    [12]

    Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar

    [13]

    Marirrodriga C G, Pacros A, Strandmoe S, et al. 2021 Astron. Astrophys. 646 A121Google Scholar

    [14]

    Li C, Fang C, Li Z, et al. 2022 Sci. China-Phys. Mech. Astron. 65 289602Google Scholar

    [15]

    Gan W Q, Zhu C, Deng Y Y, et al. 2019 Res. Astron. Astrophys. 19 156Google Scholar

    [16]

    Zhang P, Hu X Q, Lu Q F, Zhu A J, Lin M Y, Sun L, Chen L, Xu N 2022 Adv. Atmos. Sci. 39 1Google Scholar

    [17]

    Chen B, Zhang X X, He L P, et al. 2022 Light-Sci. Appl. 11 329Google Scholar

    [18]

    Bai X Y, Tian H, Deng Y Y, et al. 2023 Res. Astron. Astrophys. 23 065014Google Scholar

    [19]

    Tian H 2017 Res. Astron. Astrophys. 17 3Google Scholar

    [20]

    Poletto L, Thomas R J 2004 Appl. Opt. 43 2029Google Scholar

    [21]

    Poletto L, Gasparotto A, Tondello G, Thomas R J 2004 UV and Gamma-Ray Space Telescope Systems Glasgow, United Kingdom, June 21–25, 2004 p898

    [22]

    Larruquert J I, Keski-Kuha R A M 2000 Appl. Opt. 39 1537Google Scholar

    [23]

    王丽辉, 何玲平, 王孝坤, 尼启良, 陈波 2008 光学精密工程 16 42Google Scholar

    Wang L H, He L P, Wang X K, Ni Q L, Chen B 2008 Opt. Precis. Eng. 16 42Google Scholar

    [24]

    汪毓明, 季海生, 王亚敏, 等 2020 中国科学: 技术科学 50 1243Google Scholar

    Wang Y M, Ji H S, Wang Y M, et al. 2020 Sci. Sin. Technol. 50 1243Google Scholar

    [25]

    林隽, 黄善杰, 李燕, 等 2021 空间科学学报 41 183Google Scholar

    Liu J, Huang S J, Li Y, et al. 2021 Chin. J. Space Sci. 41 183Google Scholar

    [26]

    季海生, 汪毓明, 汪景琇 2019 中国科学: 物理学 力学 天文学 49 059605Google Scholar

    Ji H S, Wang Y M, Wang J X 2019 Sci. Sin. Phys. Mech. Astron. 49 059605Google Scholar

    [27]

    杨孟飞, 汪景琇, 王赤, 等 2023 科学通报 68 859Google Scholar

    Yang M F, Wang J X, Wang C, et al. 2023 Chin. Sci. Bull. 68 859Google Scholar

    [28]

    邓元勇, 周桂萍, 代树武, 等 2023 科学通报 68 298Google Scholar

    Deng Y Y, Zhou G P, Dai S W, et al. 2023 Chin. Sci. Bull. 68 298Google Scholar

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [4] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越. 太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 物理学报, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [5] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [9] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [12] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [13] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [14] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [15] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] 司福祺, 谢品华, Klaus-Peter Heue, 刘 诚, 彭夫敏, 刘文清. 超光谱成像差分吸收光谱技术研究. 物理学报, 2008, 57(9): 6018-6023. doi: 10.7498/aps.57.6018
    [18] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [19] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  922
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2023-10-21
  • 上网日期:  2023-11-01
  • 刊出日期:  2024-02-05

/

返回文章
返回