搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演

邢阳光 彭吉龙 段紫雯 闫雷 李林 刘越

引用本文:
Citation:

太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演

邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越

Tomographic imaging for solar extreme ultraviolet He II 30.4 nm and spectral data inversion

Xing Yang-Guang, Peng Ji-Long, Duan Zi-Wen, Yan Lei, Li Lin, Liu Yue
PDF
HTML
导出引用
  • 由磁场重联触发的发生在日冕和过渡区域上的具有高度动态的太阳爆发活动是灾害性空间天气的驱动源, 对太阳爆发活动的空间成像和光谱分光测量是实现精准空间天气预报的关键数据来源. 太阳大气上单离子氦的Lyman α跃迁产生波长30.4 nm的He II共振谱线, 相比于邻近的谱线强度至少高一个数量级, 因此能用来观测太阳爆发事件中的物质流动和能量输运过程. 本文针对传统的太阳极紫外成像仪和成像光谱仪的缺陷, 利用光线追迹方法设计了一款工作在He II 30.4 nm波长处的二维光谱层析成像仪器, 采用无狭缝的3个级次(–1, 0, +1)同时衍射成像架构, 单次快照可实现大视场的二维光谱瞬时成像. 由于3个级次图像的空间信息和光谱信息混叠, 利用有限层析投影角度的光谱数据反演算法, 重构了观测目标的三维数据立方体I (x, y, λ).
    Highly dynamic solar eruptive activities occurring over the corona and transition region, triggered off by magnetic field reconnection, are the driving source of disastrous space weather, and the space imaging and spectroscopic measurements of solar eruptive activities are a key data source for accurate space weather forecasting. The He II 30.4 nm resonance line comes from the Lyman α transition of singly ionized helium, which has an anomalous intensity, an order of magnitude higher than the intensities of other transition region lines. In this paper, we propose and design a two-dimensional spectroscopic tomographic imaging instrument operating at He II 30.4 nm wavelength to make up for the shortcomings of conventional solar extreme ultraviolet imager and imaging spectrometer, and adopt a slitless three-order (–1, 0, +1) simultaneous diffraction imaging configuration with a single snapshot to achieve two-dimensional spectroscopy instantaneous imaging with a large field of view. Owing to the confusion of spatial and spectral information of the three orders of images, the three-dimensional data cube I (x, y, λ) of the observed target is reconstructed using a spectral data inversion algorithm with a limited tomographic projection angle.
      通信作者: 李林, bit421@bit.edu.cn ; 刘越, liuyue@bit.edu.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDA15018300)资助的课题.
      Corresponding author: Li Lin, bit421@bit.edu.cn ; Liu Yue, liuyue@bit.edu.cn
    • Funds: Project supported by the Strategic Pioneer Science and Technology Program of the Chinese Academy of Sciences (Grant No. XDA15018300)
    [1]

    王水, 魏奉思 2007 地球物理学进展 22 1025Google Scholar

    Wang S, Wei F S 2007 Prog. Geophys. 22 1025Google Scholar

    [2]

    汪景琇, 季海生 2013 中国科学: 地球科学 43 883Google Scholar

    Wang J X, Ji H S 2013 Sci. China Earth Sci. 43 883Google Scholar

    [3]

    Hurford G J, Schmahl E J, Schwartz R A, Conway A J, Aschwanden M J, Csillaghy A, Dennis B R, Johns-Krull C, Krucker S1, Lin R P, Mctiernan J, Metcalf T R, Sato J, Smith D M 2002 Solar Phys. 210 61Google Scholar

    [4]

    Milligan R O, Gallagher P T, Mathioudakis M, Bloomfield D S, Keenan F P, Schwartz R A 2006 Astrophys. J. 638 L117Google Scholar

    [5]

    Underwood J H, Neupert W M 1974 Solar Phys. 35 241Google Scholar

    [6]

    Tousey R, Bartoe J D F, Brueckner G E, Purcell J D 1977 Appl. Opt. 16 4Google Scholar

    [7]

    Neupert W M, Epstein G L, Thomas R J, Thompson W T 1992 Solar Physics 137 87Google Scholar

    [8]

    Brosius W, Davila J M, Thomas A. 1998 Astrophys. J. Suppl. Ser. 119 255Google Scholar

    [9]

    Brosius J W, Thomas R J, Davila J M 2000 Astrophys. J. 543 1016Google Scholar

    [10]

    Curdt W, Brekke P, Feldman U, Wilhelm K, Dwivedi B N, Schuhle U, Lemaire P 2001 Astron. Astrophys. 375 591Google Scholar

    [11]

    Thompson W T, Brekke P 2000 Solar Phys. 195 45Google Scholar

    [12]

    Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Solar Phys. 243 3Google Scholar

    [13]

    Culhane J L, Harra L K, Doschek G A, Mariska J T, Watanabe T, Hara H 2005 Adv. Space Res. 36 1494Google Scholar

    [14]

    Pesnell W D, Thompson B J, Chamberlin P C 2012 Solar Phys. 275 3Google Scholar

    [15]

    Lemen J R, Title A M, Akin D J, et al. 2012 Solar Phys. 275 17Google Scholar

    [16]

    Müller D, Cyr O C S, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar

    [17]

    Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar

    [18]

    甘为群, 黄宇, 颜毅华 2012 中国科学: 物理学 力学 天文学 42 1274Google Scholar

    Gan W Q, Huang Y, Yan Y H 2012 Sci. Sin. Phys. Mech. Astron. 42 1274Google Scholar

    [19]

    甘为群, 颜毅, 华黄宇 2019 中国科学: 物理学 力学 天文学 49 059602Google Scholar

    Gan W Q, Yan Y H, Huang Y 2019 Sci. Sin. Phys. Mech. Astron. 49 059602Google Scholar

    [20]

    Tu C Y, Schwenn R, Donovan E, Marsch E, Wang J S, Xia L D, Zhang Y M 2008 Adv. Space Res. 41 190Google Scholar

    [21]

    Wang J S, Zhang J 2007 Adv. Space Res. 40 1770Google Scholar

    [22]

    Zanna G D, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

  • 图 1  成像光谱仪的三维数据立方体I (x, y, λ)

    Fig. 1.  Three-dimensional data cube I (x, y, λ) for imaging spectrometers.

    图 2  太阳极紫外层析成像光谱仪的基础光学架构

    Fig. 2.  Fundamental optical configuration for solar EUV tomography imaging spectrometer.

    图 3  TVLS光栅示意图

    Fig. 3.  Schematic of toroidal varied line space grating.

    图 4  太阳极紫外层析成像光谱仪光路原理图

    Fig. 4.  Optical layout of solar EUV tomographic imaging spectrometer.

    图 5  –1级次像面上的均方根点列图

    Fig. 5.  RMS spot diagram in –1 order imaging surface

    图 6  0级次像面上的均方根点列图

    Fig. 6.  RMS spot diagram in 0 order imaging surface.

    图 7  +1级次像面上的均方根点列图

    Fig. 7.  RMS spot diagram in +1 order imaging surface.

    图 8  反演目标G(x, y0, λ)的有限角度层析投影

    Fig. 8.  Limited angle tomography projection for inversion object G(x, y0, λ).

    图 9  太阳极紫外光谱图 (a)仪器带宽内的谱线强度分布; (b) He II 30.4 nm谱线高斯轮廓分布

    Fig. 9.  Solar extreme ultraviolet spectrogram: (a) Spectral lines intensity distribution in instrument bandwidth; (b) Gaussian distribution of He II 30.4 nm spectral line profile.

    图 10  初始图像和重建图像对比 (a) 初始图像; (b) 重建图像

    Fig. 10.  Comparison of the initial image and the reconstructed image: (a) Initial image; (b) reconstructed image.

    图 11  谱线的中心位置

    Fig. 11.  Central position of line.

    图 12  谱线偏移误差

    Fig. 12.  Error of line shift.

    表 1  层析成像光谱仪的技术指标和系统参数表

    Table 1.  Specifications and system parameters for tomographic imaging spectrometer.

    参数取值
    SpecificationsSpectral range/nm29.4 — 31.4
    FOV/arcmin210 arcmin × 10 arcmin
    Spectral resolution/nm0.003
    Spatial resolution/arcsec0.42
    Line-of-sight velocity/(km·s–1)> 29.61
    System focal length/mm6500
    Pixel size/μm13
    Optical volume/mm31050 mm×
    330 mm×60 mm
    Telescope designRT/mm1888.190
    Conic–1
    Δ/mm80
    Spectral imaging system design1/d0/mm–13200
    rA/mm150
    β6.87×
    i/(°)5.56
    R/mm263.514
    ρ/mm259.940
    b20.0938
    Ruling area/mm220 mm × 20 mm
    下载: 导出CSV

    表 2  层析成像光谱仪的数据重建算法SMART

    Table 2.  Data reconstruction algorithm SMART for tomography imaging spectrometer.

    Smooth multiplicative algebraic reconstruction technique
    1. Initial guess: $G(x, \lambda ) = {I_0}(x){I_\infty }(\lambda )/N$
    2. Projection: $[{I'_{ - 1}}, {I'_0}, {I'_{ + 1}}, {I'_\infty }] = P[G]$
    3. Correction: $\begin{aligned} G = G{\left[ {\frac{ { {I_{ - 1} }(x - \lambda )} }{ { { {I'}_{ - 1} }(x - \lambda )} } } \right]^\gamma }{\left[ {\frac{ { {I_0}(x)} }{ { { {I'}_0}(x)} } } \right]^\gamma }\\ \times{\left[ {\frac{ { {I_{ + 1} }(x + \lambda )} }{ { { {I'}_{ + 1} }(x + \lambda )} } } \right]^\gamma }{\left[ {\frac{ { {I_\infty }(\lambda )} }{ { { {I'}_\infty }(\lambda )} } } \right]^\gamma }\end{aligned}$
    4. Smoothing: $G = G \otimes \displaystyle\frac{1}{ {1 + 2 t + 2 s} }\left[ {\begin{array}{*{20}{c} } 0& t & 0 \\ s& 1 & s \\ 0& t & 0 \end{array} } \right]$
    5. Reprojection: $[{I'_{ - 1}}, {I'_0}, {I'_{ + 1}}, {I'_\infty }] = P[G]$
    6. Evaluate goodness of fit: $\chi _m^2 = 1 + \displaystyle\sum\limits_{x, y} \dfrac{(I'_m - I_m)^2}{N}$
    7. Adjust smoothing parameters: $t = \dfrac{t}{\chi _{ - 1}^2\chi _{ + 1}^2},~~ s = \dfrac{s}{\chi _0^2}$
    8. Loop to step 3
    下载: 导出CSV

    表 3  反演效果评价指标

    Table 3.  Evaluation indicators for the reconstruction

    Quantized indicatorsτkδRMS
    Parametric inversion0.8620.6680.294
    下载: 导出CSV
  • [1]

    王水, 魏奉思 2007 地球物理学进展 22 1025Google Scholar

    Wang S, Wei F S 2007 Prog. Geophys. 22 1025Google Scholar

    [2]

    汪景琇, 季海生 2013 中国科学: 地球科学 43 883Google Scholar

    Wang J X, Ji H S 2013 Sci. China Earth Sci. 43 883Google Scholar

    [3]

    Hurford G J, Schmahl E J, Schwartz R A, Conway A J, Aschwanden M J, Csillaghy A, Dennis B R, Johns-Krull C, Krucker S1, Lin R P, Mctiernan J, Metcalf T R, Sato J, Smith D M 2002 Solar Phys. 210 61Google Scholar

    [4]

    Milligan R O, Gallagher P T, Mathioudakis M, Bloomfield D S, Keenan F P, Schwartz R A 2006 Astrophys. J. 638 L117Google Scholar

    [5]

    Underwood J H, Neupert W M 1974 Solar Phys. 35 241Google Scholar

    [6]

    Tousey R, Bartoe J D F, Brueckner G E, Purcell J D 1977 Appl. Opt. 16 4Google Scholar

    [7]

    Neupert W M, Epstein G L, Thomas R J, Thompson W T 1992 Solar Physics 137 87Google Scholar

    [8]

    Brosius W, Davila J M, Thomas A. 1998 Astrophys. J. Suppl. Ser. 119 255Google Scholar

    [9]

    Brosius J W, Thomas R J, Davila J M 2000 Astrophys. J. 543 1016Google Scholar

    [10]

    Curdt W, Brekke P, Feldman U, Wilhelm K, Dwivedi B N, Schuhle U, Lemaire P 2001 Astron. Astrophys. 375 591Google Scholar

    [11]

    Thompson W T, Brekke P 2000 Solar Phys. 195 45Google Scholar

    [12]

    Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Solar Phys. 243 3Google Scholar

    [13]

    Culhane J L, Harra L K, Doschek G A, Mariska J T, Watanabe T, Hara H 2005 Adv. Space Res. 36 1494Google Scholar

    [14]

    Pesnell W D, Thompson B J, Chamberlin P C 2012 Solar Phys. 275 3Google Scholar

    [15]

    Lemen J R, Title A M, Akin D J, et al. 2012 Solar Phys. 275 17Google Scholar

    [16]

    Müller D, Cyr O C S, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar

    [17]

    Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar

    [18]

    甘为群, 黄宇, 颜毅华 2012 中国科学: 物理学 力学 天文学 42 1274Google Scholar

    Gan W Q, Huang Y, Yan Y H 2012 Sci. Sin. Phys. Mech. Astron. 42 1274Google Scholar

    [19]

    甘为群, 颜毅, 华黄宇 2019 中国科学: 物理学 力学 天文学 49 059602Google Scholar

    Gan W Q, Yan Y H, Huang Y 2019 Sci. Sin. Phys. Mech. Astron. 49 059602Google Scholar

    [20]

    Tu C Y, Schwenn R, Donovan E, Marsch E, Wang J S, Xia L D, Zhang Y M 2008 Adv. Space Res. 41 190Google Scholar

    [21]

    Wang J S, Zhang J 2007 Adv. Space Res. 40 1770Google Scholar

    [22]

    Zanna G D, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

  • [1] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧. 基于动态散斑照明的宽场荧光显微技术理论研究. 物理学报, 2021, 70(23): 238701. doi: 10.7498/aps.70.20211022
    [4] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [5] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [6] 祝晓松, 张庆斌, 兰鹏飞, 陆培祥. 分子轨道高时空分辨成像. 物理学报, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [7] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构. 物理学报, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [8] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [9] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [10] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [11] 刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌. 静态计算光谱成像仪图谱反演的关键数据处理技术. 物理学报, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [12] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像. 物理学报, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [13] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究. 物理学报, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [14] 吴海英, 张淳民, 赵葆常. 基于组合Wollaston棱镜成像光谱仪的视场扩大原理分析. 物理学报, 2009, 58(2): 930-935. doi: 10.7498/aps.58.930
    [15] 吴海英, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪中格兰-泰勒棱镜像质分析与评价. 物理学报, 2008, 57(6): 3499-3505. doi: 10.7498/aps.57.3499
    [16] 简小华, 张淳民, 祝宝辉, 赵葆常, 杜 娟. 利用偏振干涉成像光谱仪进行偏振探测的新方法. 物理学报, 2008, 57(12): 7565-7570. doi: 10.7498/aps.57.7565
    [17] 司福祺, 谢品华, Klaus-Peter Heue, 刘 诚, 彭夫敏, 刘文清. 超光谱成像差分吸收光谱技术研究. 物理学报, 2008, 57(9): 6018-6023. doi: 10.7498/aps.57.6018
    [18] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究. 物理学报, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [19] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [20] 陈建文, 高鸿奕, 朱化凤, 谢红兰, 李儒新, 徐至展. 中子相衬层析成像方法. 物理学报, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
计量
  • 文章访问数:  4788
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-04-01
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回