搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学透明超表面透镜及其无线通信效率增强

李豪 庞永强 屈冰玥 郑江山 徐卓

引用本文:
Citation:

光学透明超表面透镜及其无线通信效率增强

李豪, 庞永强, 屈冰玥, 郑江山, 徐卓

Optical transparent metasurface lenses and their wireless communication efficiency enhancement

Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo
PDF
HTML
导出引用
  • 玻璃作为目前室内常用的建筑材料, 无线信号通过玻璃时较大的插损会降低通信效率. 本文设计了一种工作在2.4 GHz Wi-Fi频段的光学透明超表面, 通过贴到玻璃两侧将无线信号实现区域聚焦以提高通信效率. 为了获得满足区域聚焦的相位设计, 超表面由耶路撒冷十字形和圆环两种双层结构组成, 透明导电薄膜采用导电性好、光学透明度高的铜网. 通过在微波暗室中扫描场强空间分布验证超表面的区域聚焦效果, 与空白玻璃对比, 在设计的整个聚焦区域均实现7.3 dB以上的场增强, 与仿真结果较为符合. 进一步测试了不同场景下的下载速度和网速稳定性验证透明超表面玻璃增强无线通信效率. 结果表明, 在实际使用环境中, 设计的超表面玻璃较空白玻璃的下载速度可提高10 Mb/s, 且下载速度浮动平稳. 本文设计的光学透明超表面结构简单, 使用便利, 同时具备可移动性, 可以根据通信增强需要进行随意摆放, 为室内通信增强提供了一种可行的技术途径.
    This paper presents the design of an optically transparent metasurface tailored for the 2.4 GHz Wi-Fi band. It is optically transparent and attaches to both sides of the glass to improve communication efficiency. The shape of focusing region is a rectangle with an area of 5 cm by 5 cm and a length of 10 cm. The metasurface attaches to both sides of the glass and realizes area focusing. To meet the requirements for area focusing, the metasurface possesses a double-layer structure of a Jerusalem cross and a circle, and the conductive thin film is a conductive and optically transparent copper mesh. The spatial distribution of field strength in a microwave unreflected chamber is scanned to verify the regional focusing effect of the metasurface. Compared with ordinary glass, the metalens achieves field enhancement of more than 7.3 dB in the designed aggregation region, with an average download speed increasing 20.2 Mb/s. Subsequently, the download speed and network speed stability in different scenarios are tested. The standard deviation is used to calculate the dispersion of the download speed. The results demonstrate that in the focusing area, comparing with ordinary glass, the average download speed of the signal across is increased by 13.8 Mb/s in the indoor environment, accompanied by a reduction in the standard deviation by 0.5. In the stairwell, the average download speed of the signal across of the metalens is observed to increase 12.1 Mb/s, accompanied by a reduction in the standard deviation by 1.4. In conclusion, the metasurface lens demonstrates the better ability to significantly reduce the standard deviation of download speed data in both indoor and stairwell test environments than in air and ordinary glass. This results in the effective smoothing out of the speed uctuations and the enhancing of signal transmission stability. Therefore, the ability of metalens to effectively reduce the amplitude of download speed fluctuations in various indoor environmental contexts confirms its key role in adapting to complex environments and improving the wireless communication performance. Moreover, the download speed of signals passing through the metalens is increased by more than 12 Mb/s in both test environmentsthan that of ordinary glass. This effectively improves not only the signal strength but also the communication efficiency. Concurrently, the designed optically transparent metasurface lens is straightforward in structure and user-friendly, and at the same time, it is moveable and can be positioned according to the needs of communication enhancement. The optically transparent metasurface lens scheme proposed in this study provides a potential solution to the high penetration loss problem currently encountered in indoor wireless communication.
      通信作者: 庞永强, pangyongqiang@xjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3806200)和国家自然科学基金(批准号: 61971341)资助的课题.
      Corresponding author: Pang Yong-Qiang, pangyongqiang@xjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3806200) and the National Natural Science Foundation of China (Grant No. 61971341).
    [1]

    Yang G, Du J F, Xiao M 2015 IEEE Trans. Commun. 63 3511Google Scholar

    [2]

    Mumtaz S, Rodriguez J, Dai L 2016 Mmwave Massive Mimo: A Paradigm for 5g (London: Academic Press

    [3]

    Busari S A, Mumtaz S, Al-Rubaye S, Rodriguez J 2018 IEEE Commun. Mag. 56 137Google Scholar

    [4]

    Martinez-de-Rioja E, Vaquero A F, Arrebola M, Carrasco E, Encinar J A, Achour M 2021 Proceedings of the 15th European Conference on Antennas and Propagation (Eucap) Dusseldorf , Germany, Mar 22–26, 2021 p22

    [5]

    Meng X D, Liu R X, Chu H C, Peng R W, Wang M, Hao Y, Lai Y 2022 Phys. Rev. Appl. 17 064027Google Scholar

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F 2013 IEEE J. Sel. Topics Quantum Electron. 19 4700423Google Scholar

    [7]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [8]

    Luo X 2015 Sci. China-Phys. Mech. Astron. 58 594201Google Scholar

    [9]

    Yu N F, Genevet P, Kats M A 2011 Science 334 6054

    [10]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [11]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [12]

    Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554Google Scholar

    [13]

    Chen M K, Wu Y F, Feng L, Fan Q B, Lu M H, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414Google Scholar

    [14]

    Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805Google Scholar

    [15]

    Zou X J, Zheng G G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2

    [16]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [17]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Li H Q 2013 Opt. Express 21 010739Google Scholar

    [18]

    Li H P, Wang G M, Liang J G, Gao X J, Hou H S, Jia X Y 2017 IEEE Trans. Antennas Propag. 65 11452

    [19]

    李雄, 马晓亮, 罗先刚 2017 光电工程 44 255

    Li X, Ma X L, Luo X G 2017 Opto-Electron. Eng. 44 255

    [20]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 物理学报 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yun X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [21]

    Hong S, Kim Y, Oh J 2022 IEEE Trans. Antennas Propag. 70 6671Google Scholar

    [22]

    孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar

    [23]

    Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709Google Scholar

    [24]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

  • 图 1  聚焦超表面增强通信效率的原理示意图

    Fig. 1.  Schematic of the focusing metasurface for enhancing communication efficiency.

    图 2  平面波穿过超表面后实现区域聚焦

    Fig. 2.  Regional focusing of the plane waves after passing through the metasurface.

    图 3  超表面的相位排列单元分布图

    Fig. 3.  Schematic of the phase distribution for the designed metasurface.

    图 4  超表面的两种基本单元, 耶路撒冷十字和圆环

    Fig. 4.  Design of the Jerusalem cross and circle ring cells of the metasurface.

    图 5  单元结构的仿真透射系数 (a) 幅值; (b) 相位

    Fig. 5.  Simulated transmission of the unit cells: (a) Amplitude; (b) phase.

    图 6  空白玻璃和超透镜的能流分布图 (a) 空白玻璃的正面能流分布; (b) 空白玻璃的侧面能流分布; (c) 超透镜的正面能流分布; (d) 超透镜的侧面能流分布

    Fig. 6.  Simulated energy distributions of the pure glass and the metalens: (a) Energy distributions on the front of the pure glass; (b) energy distribution on the side of the pure glass; (c) energy distributions on the front of the metalens; (d) energy distributions on side of the metalens.

    图 7  Wi-Fi频段内超透镜和空白玻璃在不同焦距处强度

    Fig. 7.  Comparison of the field intensity at the focusing areas between the pure glass and the metalens in the Wi-Fi working band.

    图 8  超透镜和空白玻璃实物图 (a) 超透镜; (b) 空白玻璃

    Fig. 8.  Photograph of the fabricated metalens (a) and pure glass (b).

    图 9  透镜聚焦性能测试验证 (a) 空白玻璃的测试环境; (b) 超透镜的测试环境

    Fig. 9.  Experimental demonstration for the focusing properties of the metalens in the microwave unreflected chamber: (a) Pure glass; (b) metalens.

    图 10  超透镜信号增强实验测试 (a) 空白玻璃在2.412 GHz不同焦距处强度; (b) 空白玻璃在2.484 GHz不同焦距处强度; (c) 超透镜在2.412 GHz不同焦距处强度; (d) 超透镜在2.484 GHz不同焦距处强度

    Fig. 10.  Experimental test field-intensity enhancement of the metalens: Intensity at different focal lengths of 2.412 GHz (a) and 2.484 GHz (b) of the pure glass; intensity at different focal lengths of 2.412 GHz (c) and 2.484 GHz (d) of the metalens.

    图 11  超透镜在50 cm处不同频点的信号强度测试 (a) 空白玻璃在不同频点的信号强度; (b)超透镜在不同频点的信号强度

    Fig. 11.  Experimental test field-intensity of the metalens at different frequency points at 50 cm: Intensity of different frequency points of the (a) pure glass and (b) the metalens.

    图 12  在微波暗室中基于超透镜的Wi-Fi通信实验演示

    Fig. 12.  Experimental demonstration of wireless communication based on the metalens in microwave unreflected chamber.

    图 13  超透镜的信号增强实验演示 (a) 空气测试结果; (b) 玻璃测试结果; (c)超透镜测试结果

    Fig. 13.  Experimental demonstration of signal enhancement by the metalens: (a) Speed-test result with the air; (b) speed-test result with the pure glass; (c) speed-test result with the metalens.

    图 14  楼梯内信号增强的实验演示 (a) 空气测试结果; (b) 玻璃测试结果; (c) 超透镜测试结果

    Fig. 14.  Experimental demonstration of wireless communication based on the metalens inside the staircase: (a) Speed-test result with the air; (b) speed-test result with the pure glass; (c) speed-test result with the metalens.

    图 15  在不同环境中Wi-Fi信号的稳定性测试 (a) 楼梯间测试; (b) 室内测试

    Fig. 15.  Stability testing of wireless signals in different environment: (a) Speed-test result of stairwell; (b) speed-test result of indoor

    表 1  信号穿过空白玻璃和超透镜对应的下载速度

    Table 1.  Comparing the download speeds of signals traversing the pure glass and the metalens.

    距离/cm 50 55 60 68
    穿过玻璃的下载速度/(Mb·s–1) 31.15 30.88 30.28 29.42
    穿过超透镜的下载速度/(Mb·s–1) 51.90 50.89 49.98 32.56
    下载: 导出CSV
  • [1]

    Yang G, Du J F, Xiao M 2015 IEEE Trans. Commun. 63 3511Google Scholar

    [2]

    Mumtaz S, Rodriguez J, Dai L 2016 Mmwave Massive Mimo: A Paradigm for 5g (London: Academic Press

    [3]

    Busari S A, Mumtaz S, Al-Rubaye S, Rodriguez J 2018 IEEE Commun. Mag. 56 137Google Scholar

    [4]

    Martinez-de-Rioja E, Vaquero A F, Arrebola M, Carrasco E, Encinar J A, Achour M 2021 Proceedings of the 15th European Conference on Antennas and Propagation (Eucap) Dusseldorf , Germany, Mar 22–26, 2021 p22

    [5]

    Meng X D, Liu R X, Chu H C, Peng R W, Wang M, Hao Y, Lai Y 2022 Phys. Rev. Appl. 17 064027Google Scholar

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F 2013 IEEE J. Sel. Topics Quantum Electron. 19 4700423Google Scholar

    [7]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [8]

    Luo X 2015 Sci. China-Phys. Mech. Astron. 58 594201Google Scholar

    [9]

    Yu N F, Genevet P, Kats M A 2011 Science 334 6054

    [10]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [11]

    Lalanne P, Chavel P 2017 Laser Photonics Rev. 11 1600295Google Scholar

    [12]

    Ming L T, Hsiao H H, Cheng H C, Mu K C, Sun G, Liu A Q, Tsai D P 2018 Adv. Opt. Mater. 6 1800554Google Scholar

    [13]

    Chen M K, Wu Y F, Feng L, Fan Q B, Lu M H, Xu T, Tsai D P 2021 Adv. Opt. Mater. 9 2001414Google Scholar

    [14]

    Banerji S, Meem M, Sensale-Rodriguez B, Majμmder A, Vasquez F G, Menon R 2019 Optica 6 805Google Scholar

    [15]

    Zou X J, Zheng G G, Yuan Q, Zang W, Zhu S 2020 Photoni X 1 2

    [16]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [17]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Li H Q 2013 Opt. Express 21 010739Google Scholar

    [18]

    Li H P, Wang G M, Liang J G, Gao X J, Hou H S, Jia X Y 2017 IEEE Trans. Antennas Propag. 65 11452

    [19]

    李雄, 马晓亮, 罗先刚 2017 光电工程 44 255

    Li X, Ma X L, Luo X G 2017 Opto-Electron. Eng. 44 255

    [20]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 物理学报 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yun X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [21]

    Hong S, Kim Y, Oh J 2022 IEEE Trans. Antennas Propag. 70 6671Google Scholar

    [22]

    孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar

    [23]

    Khorasaninejad M, Capasso F 2015 Nano Lett. 15 6709Google Scholar

    [24]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229Google Scholar

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [4] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] 宫涛, 杨建华, 单振, 王志乐, 刘后广. 非线性调频信号激励下非线性系统的最优共振响应. 物理学报, 2022, 71(5): 050503. doi: 10.7498/aps.71.20211959
    [8] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 宫涛, 杨建华, 单振, 王志乐, 刘后广. NLFM信号激励下非线性系统的最优共振响应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211959
    [11] 李军依, 叶玉儿, 凌晨, 李林, 刘泱, 夏勇. 超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用. 物理学报, 2021, 70(16): 167802. doi: 10.7498/aps.70.20210443
    [12] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [13] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [14] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [15] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [16] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [17] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [18] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  2184
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-03
  • 修回日期:  2024-04-27
  • 上网日期:  2024-06-05
  • 刊出日期:  2024-07-20

/

返回文章
返回