搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Landau-Devonshire理论探究不同类型铁电材料的电卡效应

高荣贞 王静 王俊升 黄厚兵

引用本文:
Citation:

Landau-Devonshire理论探究不同类型铁电材料的电卡效应

高荣贞, 王静, 王俊升, 黄厚兵

Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory

Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing
PDF
HTML
导出引用
  • 近年来, 低成本、高效、环保的电卡效应制冷材料得到了广泛研究, 其中包括无机钙钛矿、有机钙钛矿、有机聚合物、分子铁电材料和二维铁电材料等. 这些不同铁电材料的相变类型和电卡性能各异, 而造成其差异的物理起源尚不明确. 本文选择传统无机钙钛矿BaTiO3, PbTiO3和BiFeO3, 有机钙钛矿[MDABCO](NH4)I3, 有机聚合物P(VDF-TrFE), 分子铁电体ImClO4和二维铁电体CuInP2S6这七种材料, 利用Landau-Devonshire理论, 研究并对比了其温变、熵变和电卡强度. 通过分析自由能与极化之间的关系发现, 在相变点附近, 铁电材料的自由能势垒高度随温度的变化率越大, 造成的极化随温度的变化率越高, 而材料的电卡性能也越优异. 本文揭示了不同类型铁电材料电卡性能差异的物理起源, 为进一步开发具有高电卡性能的铁电材料提供理论指导.
    The electrocaloric effects in various types of materials, including inorganic perovskites, organic perovskites, organic polymers, molecular ferroelectrics and two-dimensional ferroelectric materials, possess great potential in realizing solid-state cooling devices due to the advantages of low-cost, high-efficiency and environmental friendly. Different ferroelectric materials have distinct characteristics in terms of phase transition and electrocaloric response. The mechanism for enhancing the electrocaloric effect currently remains elusive. Here, typical inorganic perovskite BaTiO3, PbTiO3 and BiFeO3, organic perovskite [MDABCO](NH4)I3, organic polymer P(VDF-TrFE), molecular ferroelectric ImClO4 and two-dimensional ferroelectric CuInP2S6 are selected to analyze the origins of their electrocaloric effects based on the Landau-Devonshire theory. The temperature-dependent pyroelectric coefficients and electrocaloric performances of different ferroelectric materials indicate that the first-order phase transition material MDABCO and the second-order phase transition material ImClO4 have excellent performances for electrocaloric refrigeration. The predicted results also strongly suggest that near the phase transition point of the ferroelectric material, the variation rate of free energy barrier height with temperature contributes to the polarizability change with temperature, resulting in enhanced electrocaloric effect. This present work provides a theoretical basis and a new insight into the further development of ferroelectric materials with high electrocaloric response.
      通信作者: 黄厚兵, hbhuang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51972028)和国家重点研发计划(批准号: 2019YFA0307900)资助的课题
      Corresponding author: Huang Hou-Bing, hbhuang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51972028) and the National Key R&D Program of China (Grant No. 2019YFA0307900).
    [1]

    Shi J Y, Han D L, Li Z C, Yang L, Lu S G, Zhong Z F, Chen J P, Zhang Q M, Qian X S 2019 Joule 3 1200Google Scholar

    [2]

    Liu G, Kong L, Hu Q, Zhang S 2020 Appl. Phys. Rev. 7 021405Google Scholar

    [3]

    Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665Google Scholar

    [4]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 物理学报 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Xiao D Q, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [5]

    鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波 2020 物理学报 69 127701Google Scholar

    Lu S G, Li D D, Lin X W, Jian X D, Zhao X B, Yao Y B, Tao T, Liang B 2020 Acta Phys. Sin. 69 127701Google Scholar

    [6]

    刘迪, 王静, 王俊升, 黄厚兵 2020 物理学报 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [7]

    Kobeco P, Kurtchatov I 1930 Z. Phys. 66 192Google Scholar

    [8]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [9]

    Chen C, Wang S, Zhang T, Zhang C, Chi Q, Li W 2020 RSC Adv. 10 6603Google Scholar

    [10]

    Prasad S, Hou X, Zhang J, Wu S, Wang J 2020 IEEE Trans. Electron Devices 67 1769Google Scholar

    [11]

    Karthik J, Martin L W 2011 Appl. Phys. Lett. 99 032904Google Scholar

    [12]

    Sun X H, Huang H B, Ma X, Wen Y, Dang Z M 2018 J. Ceram. Sci. Technol. 9 201Google Scholar

    [13]

    Zhang G Z, Zhang X S, Huang H B, Wang J J, Li Q, Chen L Q, Wang Q 2016 Adv. Mater. 28 4811Google Scholar

    [14]

    Huang Y H, Wang J J, Yang T N, Wu Y J, Chen X M, Chen L Q 2018 Appl. Phys. Lett. 112 102901Google Scholar

    [15]

    Huang H B, Zhang G Z, Ma X Q, Liang D S, Wang J S, Liu Y, Wang Q, Chen L Q 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

    [16]

    Zhou Y, Lin Q, Liub W, Wang D 2016 RSC Adv. 6 14084Google Scholar

    [17]

    Hanani Z, Mezzane D, Amjoud M, Razumnaya A G, Fourcade S, Gagou Y, Hoummada K, El Marssi M, Goune M 2019 J. Mater. Sci.: Mater. Electron. 30 6430Google Scholar

    [18]

    Bai Y, Han X, Qiao L 2013 Appl. Phys. Lett. 102 252904Google Scholar

    [19]

    Weyland F, Hayati R, Novak N 2019 Ceram. Int. 45 11408Google Scholar

    [20]

    Sun X H, Huang H B, Jafri H M, Wang J S, Wen Y, Dang Z M 2019 Appl. Sci. 9 1672Google Scholar

    [21]

    Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S 2019 J. Alloys Compd. 803 185Google Scholar

    [22]

    Zheng G P, Uddin S, Zheng X, Yang J 2016 J. Alloys Compd. 663 249Google Scholar

    [23]

    Matsushita Y, Yoshimura T, Kiriya D, Fujimura N 2020 Appl. Phys. Express 13 041007Google Scholar

    [24]

    Aziguli H, Liu Y, Zhang G Z, Jiang S L, Yu P, Wang Q 2019 Europhys. Lett. 125 57001Google Scholar

    [25]

    Li J, Zhao X, Zhang T, Qian X, Hou Y, Yang L, Zhang Q M 2017 Phase Transitions 90 99Google Scholar

    [26]

    Qian X S, Yang T N, Zhang T, Chen L Q, Zhang Q M 2016 Appl. Phys. Lett. 108 142902Google Scholar

    [27]

    Qian J, Peng R, Shen Z, Jiang J, Xue F, Yang T, Chen L, Shen Y 2019 Adv. Mater. 31 1801949Google Scholar

    [28]

    Zhang G, Zhang X, Yang T, Li Q, Chen L Q, Jiang S, Wang Q 2015 ACS Nano 9 7164Google Scholar

    [29]

    Chen Y, Qian J, Yu J, Guo M, Zhang Q, Jiang J, Shen Z, Chen L Q, Shen Y 2020 Adv. Mater. 32 1907927Google Scholar

    [30]

    Yang Y, Zhou Z, Ke X, Wang Y, Su X, Li J, Bai Y, Ren X 2020 Scr. Mater. 174 44Google Scholar

    [31]

    Zhao C, Yang J, Huang Y, Hao X, Wu J 2019 J. Mater. Chem. A 7 25526Google Scholar

    [32]

    Mendez-Gonzalez Y, Pelaiz-Barranco A, Guerra J D S 2019 Appl. Phys. Lett. 114 162902Google Scholar

    [33]

    Lu B, Li P, Tang Z, Yao Y, Gao X, Kleemann W, Lu S G 2017 Sci. Rep. 7 45335Google Scholar

    [34]

    Sun X H, Huang H B, Wang J S, Wen Y Q, Dang Z M 2019 J. Alloys Compd. 777 821Google Scholar

    [35]

    Wu H H, Zhu J, Zhang T Y 2015 Nano Energy 16 419Google Scholar

    [36]

    Hou X, Wu H, Li H, Chen H, Wang J 2018 J. Phys.: Condens. Matter 30 465401Google Scholar

    [37]

    Wu H H, Zhu J, Zhang T Y 2015 RSC Adv. 5 37476Google Scholar

    [38]

    Liu Z, Yang B, Cao W, Lookman T 2018 Phys. Status Solidi B 255 1700469Google Scholar

    [39]

    Hou X, Li H, Shimada T, Kitamura T, Wang J 2018 J. Appl. Phys. 123 124103Google Scholar

    [40]

    Zeng Y K, Li B, Wang J B, Zhong X L, Wang W, Wang F, Zhou Y C 2014 RSC Adv. 4 30211Google Scholar

    [41]

    Si M W, Saha A K, Liao P Y, Gao S J, Neumayer S M, Jian J, Qin J K, Wisinger N B, Wang H Y, Maksymovych P, Wu W Z, Gupta S K, Ye P D 2019 ACS Nano 13 8760Google Scholar

    [42]

    Wang J J, Fortino D, Wang B, Zhao X, Chen L Q 2019 Adv. Mater. 32 1906224Google Scholar

    [43]

    Li W R, Jafri H M, Zhang C, Zhang Y J, Zhang H B, Huang H B, Jiang S L, Zhang G Z 2020 J. Mater. Chem. A 8 16189Google Scholar

    [44]

    Liu D, Zhao R, Jafri H M, Wang J S, Huang H B 2019 Appl. Phys. Lett. 114 112903Google Scholar

    [45]

    Wang J J, Wu P P, Ma X Q, Chen L Q 2010 J. Appl. Phys. 108 114105Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Hsieh Y H, Xue F, Yang T N, Liu H J, Zhu Y M, Chen Y C, Zhan Q, Duan C G, Chen L Q, He Q, Chu Y H 2016 Nat. Commun. 7 13199Google Scholar

    [48]

    Bai G, Qin X, Xie Q, Gao C 2019 Physica B 560 208Google Scholar

    [49]

    Huang C, Yang H B, Gao C F 2018 J. Appl. Phys. 123 154102Google Scholar

    [50]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25Google Scholar

    [51]

    Bai G, Liu D, Gao C 2019 J. Appl. Phys. 126 164105Google Scholar

  • 图 1  不同铁电材料的极化及热释电系数随温度的变化 (a), (b) BTO, PTO, BFO, ImClO4, MDABCO, CIPS, P(VDF-TrFE)在电场为0 (a) 和5 MV/m (b) 时极化随温度的变化; (c)一级相变材料BTO, PTO, MDABCO, P(VDF-TrFE)在电场为5 MV/m时热释电系数随温度的变化; (d)二级相变材料BFO, ImClO4, CIPS在电场为5 MV/m时热释电系数随温度的变化

    Fig. 1.  Temperature dependent polarization and pyroelectric coefficients obtained in different ferroelectric materials: (a), (b) Temperature-dependent polarization for BTO, PTO, BFO, ImClO4, MDABCO, CIPS, and P(VDF-TrFE) with the electric field of 0 and 5 MV/m, respectively; (c) temperature dependent pyroelectric coefficients for the first-order phase transition materials BTO, PTO, MDABCO and P(VDF-TrFE) with the electric field of 5 MV/m; (d) temperature dependent pyroelectric coefficients for the second-order phase transition materials BFO, ImClO4 and CIPS with the electric field of 5 MV/m.

    图 2  不同铁电材料的等温熵变和绝热温变在电场为5 MV·m–1时随温度的变化 (a), (c)一级相变材料BTO, PTO, MDABCO和P(VDF-TrFE)等温熵变和绝热温变随温度的变化; (b), (d)二级相变材料BFO, ImClO4和CIPS等温熵变和绝热温变随温度的变化

    Fig. 2.  Temperature dependent ΔS and ΔT from different ferroelectric materials when the applied electric field is 5 MV/m: (a), (c) Temperature dependent ΔS and ΔT from the first-order phase transition materials BTO, PTO, MDABCO and P(VDF-TrFE), respectively; (b), (d) temperature dependent ΔS and ΔT from the second-order phase transition materials BFO, ImClO4 and CIPS, respectively.

    图 3  不同铁电材料的电卡强度ΔSE和ΔTE随温度的变化 (a), (c)一级相变材料BTO, PTO, MDABCO和P(VDF-TrFE) ΔSE和ΔTE随温度的变化; (b), (d)二级相变材料BFO, ImClO4和CIPS的ΔSE和ΔTE随温度的变化(图中实线代表在电场为5 MV/m时的计算结果, 带符号的虚线代表P(VDF-TrFE)在较大电场(40 MV/m)的计算结果, 符号代表参考文献中数据. Ref.a, Ref.b, Ref.c, Ref.d分别对应参考文献[42]、文献[24]、文献[43]、文献[41])

    Fig. 3.  Temperature dependent EC strength ΔSE and ΔTE from different ferroelectric materials: (a), (c) Temperature dependent ΔSE and ΔTE from first-order phase transition materials BTO, PTO, MDABCO and P(VDF-TrFE); (b), (d) temperature dependent ΔSE and ΔTE from the second-order phase change materials BFO, ImClO4 and CIPS. The solid lines in the figure indicate the calculation results when the electric field is 5 MV/m, and the dotted lines with symbols indicate the calculation results of P(VDF-TrFE) in a larger electric field (40 MV/m). The symbols indicate the data in the references, Ref.a, Ref.b, Ref. c, Ref.d correspond to Ref. [42], Ref. [24], Ref. [43], Ref. [41] respectively

    图 4  不同铁电材料在TC-5, TC-3, TC-1 (K)温度下的电滞回线 (a), (c)一级相变材料MDABCO和BTO极化随电场的变化; (b), (d)二级相变材料ImClO4和CIPS极化随电场的变化

    Fig. 4.  Hysteresis loops of different ferroelectric materials at temperature of TC-5, TC-3, TC-1 (K): (a), (c) Electric-field dependent of polarization from the first-order phase transition materials MDABCO and BTO; (b), (d) electric-field dependent of polarization from the second-order phase transition materials ImClO4 and CIPS.

    图 5  不同铁电材料在TC-5, TC-3, TC-1 (K)温度下自由能随极化的变化 (a), (c)一级相变材料MDABCO和BTO自由能随极化的变化; (b), (d)二级相变材料ImClO4和CIPS自由能随极化的变化; 图中三维彩色插入图为不同铁电材料在TC-5 (K)温度下的三维自由能曲面图

    Fig. 5.  Free energy as a function of polarization from different ferroelectric materials at the temperature of TC-5, TC-3, TC-1 (K): (a), (c) Free energy curves as a function of polarization from first-order phase transition materials MDABCO and BTO; (b), (d) free energy curves as a function of polarization from second-order phase transition materials ImClO4 and CIPS. Three-dimensional inset figures show three-dimensional free energy surface at TC-5 (K) from different ferroelectric materials.

    表 1  不同铁电材料的Landau系数

    Table 1.  Landau coefficients of different kinds of ferroelectric materials.

    CoefficientsBaTiO3[45]PbTiO3[46]BiFeO3[47]ImClO4[43][MDABCO]
    (NH4)I3[42]
    CuInP2S6[41]P(VDF-TrFE)[26]
    α1/C–2·m2·N $\begin{array}{cc} & 5.0 \times 10^5 \times 160 \times\\& \Big[{\rm Coth}\Big(\dfrac{160}{T} \Big)–{\rm Coth} \Big(\dfrac{160}{390}\Big)\Big] \end{array}$3.8 × 105×
    (T – 752)
    4.646 × 105×
    (T – 1103)
    7.533 × 107×
    (T – 373)
    4.01 × 106×
    (T – 437)
    1.76 × 107×
    (T – 315)
    1.412 × 107×
    (T – 315)
    α11/C–4·m6·N–1.154×108–0.73×1082.290×1081.5×1011–7.032×1091.38×1011–1.842×1011
    α12/C–4·m6·N6.530×1087.5×1083.064×1081.124×108
    α111/C–6·m10·N–2.106×1092.6×1085.99×1092×1012α111(T)6.81×10132.585×1013
    α112/C–6·m10·N4.091×1096.1×108–3.340×1080
    α123/C–6·m10·N–6.688×109–3.7×109–1.778×109–2.018×1010
    α1111/C–8·m14·N7.590×1010
    α1112/C–8·m14·N–2.193×1010
    α1122/C–8·m14·N–2.221×1010
    α1123/C–8·m14·N2.416× 1010
    注: α111(T): T > T0(437 K), α111 = 3×1011; TT0, α111 = –3.5085×109× 55$\left[{\rm Coth}\left(\dfrac{55}{T}\right) \right.$ –Coth$\left.\left(\dfrac{55}{523}\right)\right]$.
    下载: 导出CSV

    表 2  不同铁电材料的比热容和密度

    Table 2.  Specific heat capacity and density of different ferroelectric materials.

    ParametersBaTiO3[35,37,42]PbTiO3[36,48,49]BiFeO3[20]ImClO4[43][MDABCO](NH4)I3[42]CuInP2S6[41]P(VDF-TrFE)[50,51]
    ρ/kg·m–36020830083461719403934051886
    C/J·m–3·K–13.05 × 1063.9 × 1062.88 × 1062.423 × 1064.039 × 1061.896 × 1062.244 × 106
    下载: 导出CSV
  • [1]

    Shi J Y, Han D L, Li Z C, Yang L, Lu S G, Zhong Z F, Chen J P, Zhang Q M, Qian X S 2019 Joule 3 1200Google Scholar

    [2]

    Liu G, Kong L, Hu Q, Zhang S 2020 Appl. Phys. Rev. 7 021405Google Scholar

    [3]

    Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665Google Scholar

    [4]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 物理学报 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Xiao D Q, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [5]

    鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波 2020 物理学报 69 127701Google Scholar

    Lu S G, Li D D, Lin X W, Jian X D, Zhao X B, Yao Y B, Tao T, Liang B 2020 Acta Phys. Sin. 69 127701Google Scholar

    [6]

    刘迪, 王静, 王俊升, 黄厚兵 2020 物理学报 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [7]

    Kobeco P, Kurtchatov I 1930 Z. Phys. 66 192Google Scholar

    [8]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [9]

    Chen C, Wang S, Zhang T, Zhang C, Chi Q, Li W 2020 RSC Adv. 10 6603Google Scholar

    [10]

    Prasad S, Hou X, Zhang J, Wu S, Wang J 2020 IEEE Trans. Electron Devices 67 1769Google Scholar

    [11]

    Karthik J, Martin L W 2011 Appl. Phys. Lett. 99 032904Google Scholar

    [12]

    Sun X H, Huang H B, Ma X, Wen Y, Dang Z M 2018 J. Ceram. Sci. Technol. 9 201Google Scholar

    [13]

    Zhang G Z, Zhang X S, Huang H B, Wang J J, Li Q, Chen L Q, Wang Q 2016 Adv. Mater. 28 4811Google Scholar

    [14]

    Huang Y H, Wang J J, Yang T N, Wu Y J, Chen X M, Chen L Q 2018 Appl. Phys. Lett. 112 102901Google Scholar

    [15]

    Huang H B, Zhang G Z, Ma X Q, Liang D S, Wang J S, Liu Y, Wang Q, Chen L Q 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

    [16]

    Zhou Y, Lin Q, Liub W, Wang D 2016 RSC Adv. 6 14084Google Scholar

    [17]

    Hanani Z, Mezzane D, Amjoud M, Razumnaya A G, Fourcade S, Gagou Y, Hoummada K, El Marssi M, Goune M 2019 J. Mater. Sci.: Mater. Electron. 30 6430Google Scholar

    [18]

    Bai Y, Han X, Qiao L 2013 Appl. Phys. Lett. 102 252904Google Scholar

    [19]

    Weyland F, Hayati R, Novak N 2019 Ceram. Int. 45 11408Google Scholar

    [20]

    Sun X H, Huang H B, Jafri H M, Wang J S, Wen Y, Dang Z M 2019 Appl. Sci. 9 1672Google Scholar

    [21]

    Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S 2019 J. Alloys Compd. 803 185Google Scholar

    [22]

    Zheng G P, Uddin S, Zheng X, Yang J 2016 J. Alloys Compd. 663 249Google Scholar

    [23]

    Matsushita Y, Yoshimura T, Kiriya D, Fujimura N 2020 Appl. Phys. Express 13 041007Google Scholar

    [24]

    Aziguli H, Liu Y, Zhang G Z, Jiang S L, Yu P, Wang Q 2019 Europhys. Lett. 125 57001Google Scholar

    [25]

    Li J, Zhao X, Zhang T, Qian X, Hou Y, Yang L, Zhang Q M 2017 Phase Transitions 90 99Google Scholar

    [26]

    Qian X S, Yang T N, Zhang T, Chen L Q, Zhang Q M 2016 Appl. Phys. Lett. 108 142902Google Scholar

    [27]

    Qian J, Peng R, Shen Z, Jiang J, Xue F, Yang T, Chen L, Shen Y 2019 Adv. Mater. 31 1801949Google Scholar

    [28]

    Zhang G, Zhang X, Yang T, Li Q, Chen L Q, Jiang S, Wang Q 2015 ACS Nano 9 7164Google Scholar

    [29]

    Chen Y, Qian J, Yu J, Guo M, Zhang Q, Jiang J, Shen Z, Chen L Q, Shen Y 2020 Adv. Mater. 32 1907927Google Scholar

    [30]

    Yang Y, Zhou Z, Ke X, Wang Y, Su X, Li J, Bai Y, Ren X 2020 Scr. Mater. 174 44Google Scholar

    [31]

    Zhao C, Yang J, Huang Y, Hao X, Wu J 2019 J. Mater. Chem. A 7 25526Google Scholar

    [32]

    Mendez-Gonzalez Y, Pelaiz-Barranco A, Guerra J D S 2019 Appl. Phys. Lett. 114 162902Google Scholar

    [33]

    Lu B, Li P, Tang Z, Yao Y, Gao X, Kleemann W, Lu S G 2017 Sci. Rep. 7 45335Google Scholar

    [34]

    Sun X H, Huang H B, Wang J S, Wen Y Q, Dang Z M 2019 J. Alloys Compd. 777 821Google Scholar

    [35]

    Wu H H, Zhu J, Zhang T Y 2015 Nano Energy 16 419Google Scholar

    [36]

    Hou X, Wu H, Li H, Chen H, Wang J 2018 J. Phys.: Condens. Matter 30 465401Google Scholar

    [37]

    Wu H H, Zhu J, Zhang T Y 2015 RSC Adv. 5 37476Google Scholar

    [38]

    Liu Z, Yang B, Cao W, Lookman T 2018 Phys. Status Solidi B 255 1700469Google Scholar

    [39]

    Hou X, Li H, Shimada T, Kitamura T, Wang J 2018 J. Appl. Phys. 123 124103Google Scholar

    [40]

    Zeng Y K, Li B, Wang J B, Zhong X L, Wang W, Wang F, Zhou Y C 2014 RSC Adv. 4 30211Google Scholar

    [41]

    Si M W, Saha A K, Liao P Y, Gao S J, Neumayer S M, Jian J, Qin J K, Wisinger N B, Wang H Y, Maksymovych P, Wu W Z, Gupta S K, Ye P D 2019 ACS Nano 13 8760Google Scholar

    [42]

    Wang J J, Fortino D, Wang B, Zhao X, Chen L Q 2019 Adv. Mater. 32 1906224Google Scholar

    [43]

    Li W R, Jafri H M, Zhang C, Zhang Y J, Zhang H B, Huang H B, Jiang S L, Zhang G Z 2020 J. Mater. Chem. A 8 16189Google Scholar

    [44]

    Liu D, Zhao R, Jafri H M, Wang J S, Huang H B 2019 Appl. Phys. Lett. 114 112903Google Scholar

    [45]

    Wang J J, Wu P P, Ma X Q, Chen L Q 2010 J. Appl. Phys. 108 114105Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Hsieh Y H, Xue F, Yang T N, Liu H J, Zhu Y M, Chen Y C, Zhan Q, Duan C G, Chen L Q, He Q, Chu Y H 2016 Nat. Commun. 7 13199Google Scholar

    [48]

    Bai G, Qin X, Xie Q, Gao C 2019 Physica B 560 208Google Scholar

    [49]

    Huang C, Yang H B, Gao C F 2018 J. Appl. Phys. 123 154102Google Scholar

    [50]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q, Yang J 2011 Eur. Phys. J. B 84 25Google Scholar

    [51]

    Bai G, Liu D, Gao C 2019 J. Appl. Phys. 126 164105Google Scholar

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟. 物理学报, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [3] 吴明宇, 弭光宝, 李培杰, 黄旭. 600 ℃高温钛合金燃烧组织演变及机理. 物理学报, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [4] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [5] 汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国. 0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响. 物理学报, 2022, 71(14): 147701. doi: 10.7498/aps.71.20220280
    [6] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应. 物理学报, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [7] 林翠, 白刚, 李卫, 高存法. 外延PbZr0.2Ti0.8O3薄膜负电容的应变调控. 物理学报, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [8] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [9] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [11] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [12] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [13] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响. 物理学报, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [14] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [15] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [16] 唐先柱, 彭增辉, 刘永刚, 鲁兴海, 宣丽. 相变前的热力学平衡态对铁电液晶排列的影响. 物理学报, 2010, 59(9): 6261-6265. doi: 10.7498/aps.59.6261
    [17] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析. 物理学报, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [18] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程. 物理学报, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [19] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响. 物理学报, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  12760
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 修回日期:  2020-08-06
  • 上网日期:  2020-11-13
  • 刊出日期:  2020-11-05

/

返回文章
返回