搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响

汤卉 牛翔 杨志朋 彭小草 赵小波 姚英邦 陶涛 梁波 唐新桂 鲁圣国

引用本文:
Citation:

0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响

汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国

Giant electrocaloric effect enhancement due to the polarization flip and influence of Mn4+ doping on the dielectric, ferroelectric properties in 0.7BiFeO3-0.3BaTiO3 ceramics

Tang Hui, Niu Xiang, Yang Zhi-Peng, Peng Xiao-Cao, Zhao Xiao-Bo, Yao Ying-Bang, Tao Tao, Liang Bo, Tang Xin-Gui, Lu Sheng-Guo
PDF
HTML
导出引用
  • BiFeO3 (BFO)作为反铁磁性和铁电性共存的多铁性材料, 其饱和极化强度理论值大于100 μC/cm2, 居里温度为830 ℃, 具有较强的电卡效应. 但是由于BFO高温烧结过程中Bi2O3易挥发, 铁离子易变价, 导致BFO中缺陷较多, 漏电流较大, 其铁电特性难以发挥出来. 虽然采用与BaTiO3 (BTO)等氧化物铁电体形成固溶体的方法可以减小漏电流, 但是漏电流和高介电损耗问题仍然存在. 本文试图通过添加锰离子到BFO-BTO固溶体的方法解决这一问题. 采用传统的高温固相反应法制备了0.7BiFeO3-0.3BaTiO3+x%MnO2 (BFO-BTO+x%MnO2, 其中x%为质量分数)陶瓷, 研究了MnO2 掺杂对BFO-BTO固溶体的微观结构、介电和铁电性能的影响. 值得注意的是, BFO-BTO+x%MnO2样品测试结果证明少量掺杂MnO2能降低BFO-BTO陶瓷的介电损耗和漏电流, 这是由于掺杂Mn4+补偿氧空位浓度所致. 另外, 0.7BFO-0.3BTO+0.5%MnO2 陶瓷在100 kV/cm时的最大极化强度达到50.53 μC/cm2. 最后利用热电偶直测法测试了BFO-BTO+x%MnO2陶瓷的电卡效应, 发现极化翻转方法能使BFO-BTO+x%MnO2陶瓷的电卡效应翻倍增大, 其中x = 0样品从0至–30 kV/cm的变化与30 kV/cm至0的电场变化相比, 增大近8倍, 并且证实该方法同样适用于多晶一级相变铁电体.
    As a kind of ferroelectric and antiferromagnetic coexistent multi-ferroic material, BiFeO3 (BFO) has a theoretical saturation polarization over 100 μC/cm2, and a Curie temperature of 830 ℃, which may offer a huge electrocaloric effect. However, owing to the evaporation of Bi2O3 in the sintering process at high temperatures and the variation of chemical valence of iron ions, there are lots of point defects and also a large leakage current existing in BFO, making the ferroelectricity of BFO hard to develop and measure. Although the forming of solid solution with BaTiO3 (BTO) or other oxide ferroelectrics may mitigate the leakage current, high loss tangent is still existent. This work tries to address this issue by adding manganese ions into the BFO-BTO solid solution. The 0.7(BFO)-0.3(BTO)+x%MnO2 ceramics are prepared through using the conventional solid-state reaction at high temperature. The microstructure, dielectric characteristic and ferroelectric characteristic are investigated by doping different Mn4+ ions. Results indicate that the crystallographic structure is of rhombohedral and pseudocubic phase coexistence. It is observed that a certain content of Mn4+ ions may lead both the loss tangent and the leakage current for BFO-BTO ceramic to decrease, which is due to the compensation of dopant Mn4+ ions for the oxygen vacancies. In addition, the 0.7BFO-0.3BTO+0.5%MnO2 ceramic arrives at a maximum polarization of 50.53 μC/cm2 at 100 kV/cm. Finally, a direct approach is used to measure the electrocaloric effect. It is found that using the polarization flip method, the ECE temperature change is observed to increase almost 8 times when the electric field changes from 0 to –30 kV/m with respect to that when the electric field decreases from 30 kV/cm to 0. This verifies that the Lu et al’s method is also applicable to polycrystalline first-order phase transition ferroelectrics.
      通信作者: 鲁圣国, sglu@gdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51372042, 51872053)、广东省自然科学基金(批准号: 2015A030308004)、国家自然科学基金-广东联合基金(批准号: U1501246)、东莞市核心技术攻关前沿项目(批准号: 2019622101006)和先进能源科学与技术广东省实验室佛山分中心暨佛山仙湖实验室开放基金重点项目(批准号: XHT2020-011)资助的课题.
      Corresponding author: Lu Sheng-Guo, sglu@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51372042, 51872053), the Guangdong Provincial Natural Science Foundation, China (Grant No. 2015A030308004), the NSFC-Guangdong Joint Fund, China (Grant No. U1501246), the Dongguan City Frontier Research Project, China (Grant No. 2019622101006), and the Advanced Energy Science and Technology Guangdong Provincial Laboratory Foshan Branch-Foshan Xianhu Laboratory Open Fund-Key Project, China (Grant No. XHT2020-011).
    [1]

    Nan C W 2015 Sci. Sin. Tech. 45 339Google Scholar

    [2]

    Meng K, Li W, Tang X G, Liu Q X, Jiang Y P 2021 ACS Appl. Electron. Mater. 4 9216Google Scholar

    [3]

    Khasbulatov S, Kallaev S, Gadjiev H, Omarov Z, Bakmaev A, Verbenko I, Pavelko A, Reznichenko L 2020 J. Adv. Dielectr. 10 2060019Google Scholar

    [4]

    Wang D W, Wang G, Murakami S, Fan Z, Feteira A, Zhou D, Sun S, Zhao Q, Reaney I M 2018 J. Adv. Dielectr. 8 1830004Google Scholar

    [5]

    Xun B, Song A, Yu J, Yin Y, Li J F, Zhang B P 2021 ACS Appl. Mater. Interfaces 13 4192Google Scholar

    [6]

    Kim A Y, Lee Y J, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2012 J. Korean Phys. Soc. 60 83Google Scholar

    [7]

    Wang D, Wang M, Liu F, Cui Y, Zhao Q, Sun H, Jin H, Cao M 2015 Ceram. Int. 41 8768Google Scholar

    [8]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113Google Scholar

    [9]

    Lebeugle D, Colson D, Forget A, Vire M 2007 Appl. Phys. Lett. 91 022907Google Scholar

    [10]

    Khesro A, Boston R, Sterianou I, Sinclair D C, Reaney I M 2016 J. Appl. Phys. 119 054101Google Scholar

    [11]

    Leontsev S O, Eitel R E 2009 J. Am. Ceram. Soc. 92 2957Google Scholar

    [12]

    Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855Google Scholar

    [13]

    Chaudhary P, Shukla R, Dabas S, Thakur O P 2021 J. Alloys Compd. 869 159228Google Scholar

    [14]

    Wan Y, Li Y, Li Q, Zhou W, Zheng Q, Wu X, Xu C, Zhu B, Lin D, Jones J 2014 J. Am. Ceram. Soc. 97 1809Google Scholar

    [15]

    Chen Z, Bai X, Wang H, Du J, Bai W, Li L, Wen F, Zheng P, Wu W, Zheng L, Zhang Y 2020 Ceram. Int. 46 11549Google Scholar

    [16]

    Lu Z, Wang G, Bao W, Li J, Li L, Mostaed A, Yang H, Ji H, Li D, Feteira A, Xu F, Sinclair D C, Wang D, Liu S Y, Reaney I M 2020 Energy Environ. Sci. 13 2938Google Scholar

    [17]

    Calisir I, Amirov A A, Kleppe A K, Hall D A 2018 J. Mater. Chem. A 6 5378Google Scholar

    [18]

    Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2008 Ceram. Int. 34 797Google Scholar

    [19]

    Yang H, Zhou C, Liu X, Zhou Q, Chen G, Li W, Wang H 2013 J. Eur. Ceram. Soc. 33 1177Google Scholar

    [20]

    Li Q, Wei J X, Cheng J R, Chen J G 2017 J. Mater. Sci. 52 229Google Scholar

    [21]

    Li Q, Cheng J R, Chen J G 2017 J. Mater. Sci. :Mater. Electron. 28 1370Google Scholar

    [22]

    Alpay S P, Mantese J, Trolier-McKinstry S, Zhang Q, Whatmore R W 2014 MRS Bull. 39 1099Google Scholar

    [23]

    Jian X D, Lu B, Li D D, Yao Y B, Tao T, Liang B, Guo J H, Zeng Y J, Chen J L, Lu S G 2018 ACS Appl. Mater. Interfaces 10 4801Google Scholar

    [24]

    Neese B, Chu B, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [25]

    鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波 2020 物理学报 69 127701Google Scholar

    Lu S G, Li D D, Lin X W, Jian X D, Zhao X B, Yao Y B, Tao T, Liang B 2020 Acta Phys. Sin. 69 127701Google Scholar

    [26]

    Larson A C, Von Dreele R B 2004 General Structure Analysis System (GSAS) Los Alamos: Los Alamos National Laboratory Report LAUR p86

    [27]

    Toby H 2001 J. Appl. Crystallogr. 34 210Google Scholar

    [28]

    Niu X, Jian X, Chen X, Li H, Liang W, Liang B, Lu S G 2021 J. Adv. Ceram. 10 482Google Scholar

    [29]

    Dicastro V, Polzobetti G 1989 J. Electron Spectrosc. Relat. Phenom. 48 117Google Scholar

    [30]

    Allen G C, Harris S J, Jutson J A 1989 Appl. Surf. Sci. 37 111Google Scholar

    [31]

    Zhang X, Hu D, Pan Z, Lv X, He Z, Yang F, Li P, Liu J, Zhai J 2021 Chem. Eng. J. 406 126818Google Scholar

    [32]

    Basso V, Gerard J F, Pruvost S 2014 Appl. Phys. Lett. 105 052907Google Scholar

    [33]

    Lu B, Jian X, Lin X, Yao Y, Tao T, Liang B, Luo H, Lu S G 2020 Crystals 10 451Google Scholar

  • 图 1  BFO-BTO+x%MnO2陶瓷的XRD图谱 (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00

    Fig. 1.  XRD patterns of BFO-BTO+x%MnO2 samples: (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00.

    图 2  BFO-BTO+x%MnO2陶瓷的Mn 2pXPS图谱 (a) x = 0.20; (b) x = 0.50; (c) x = 1.00

    Fig. 2.  Mn 2p XPS spectrums of BFO-BTO+x%MnO2 samples: (a) x = 0.20; (b) x = 0.50; (c) x = 1.00.

    图 3  BFO-BTO+x%MnO2陶瓷的SEM形貌图 (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00

    Fig. 3.  SEM images of BFO-BTO+x%MnO2 samples: (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00.

    图 4  BFO-BTO+x%MnO2陶瓷在不同频率不同温度下的介电常数和介电损耗 (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00

    Fig. 4.  Permittivity and loss tangent as a function of temperature and frequency for BFO-BTO+x%MnO2 samples: (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00.

    图 5  (a) BFO-BTO+x%MnO2陶瓷在不同频率的介电损耗; (b) BFO-BTO+x%MnO2陶瓷在50 kV/cm 时的漏电流

    Fig. 5.  (a) $\varepsilon_{\rm{r}} $ and tanδ as a function of frequency for BFO-BTO+x%MnO2 samples; (b) the leakage current for BFO-BTO+x%MnO2 samples at 50 kV/cm.

    图 6  BFO-BTO+x%MnO2陶瓷在不同电场下的室温电滞回线 (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00

    Fig. 6.  The P-E hysteresis loops for BFO-BTO+x%MnO2 samples with different electric fields at room temperature: (a) x = 0; (b) x = 0.05; (c) x = 0.10; (d) x = 0.20; (e) x = 0.50; (f) x = 1.00.

    图 7  (a) Mn0陶瓷在直测电卡时的电压变化; (b) Mn0陶瓷在电场从+30 kV/cm至0 kV/cm和0 kV/cm至–30 kV/cm过程中的直测电卡; (c) BFO-BTO+x%MnO2陶瓷在不同电场直测电卡和电场转变从+30—–30 kV/cm时电畴翻转的直测电卡; (d) BFO-BTO陶瓷在电场40 kV/cm和50 kV/cm 时不同温度下直测电卡; (e) Mn0陶瓷在电场40 kV/cm和50 kV/cm 时不同温度下直测电卡电卡强度ΔT/E; (f) Mn0陶瓷理论计算的电卡强度ΔT/E

    Fig. 7.  (a) The change of electric field when the electrocaloric of Mn0 ceramics measured; (b) the direct measurement electrocaloric ΔT of Mn0 ceramics during the electric field changes from +30 kV/cm to 0 kV/cm and 0 kV/cm to –30 kV/cm; (c) the ΔT of BFO-BTO + x% MnO2 ceramics at different electric field and the ΔT of BFO-BTO + x% MnO2 ceramics with polarization flip during the electric field changes from +30 kV/cm to –30 kV/cm; (d) the ΔT of BFO-BTO ceramics at different temperatures under 40 kV/cm and 50 kV/cm; (e) the ΔT/E of Mn0 ceramics at different temperatures under 40 kV/cm and 50 kV/cm; (f) the theoretical ΔT/E of Mn0 ceramics.

    表 1  BFO-BTO+x%MnO2样品的精修参数

    Table 1.  The refined retrieved lattice parameters, volumes and R factors for BFO-BTO+x%MnO2 ceramics.

    x相成分/%晶格参数/Å晶胞体积/Å3R 因子
    aca
    RPCRPCRPCRwp/%Rwp/%χ2
    075.6424.365.6400(2)13.8964(0)3.9893(6)382.9263.496.984.652.37
    0.0572.9727.035.6411(7)13.8983(8)3.9902(5)383.0363.535.914.061.45
    0.1072.7027.305.6390(5)13.8909(8) 3.9938(5)382.5463.715.233.811.24
    0.2068.4831.625.6398(2)13.8962(4) 3.9911(4)382.7963.586.394.491.85
    0.5067.2132.795.6458(1)13.8768(6) 3.9898(0)383.0763.515.804.091.50
    1.0066.4133.595.6487(1)13.8299(8) 3.9914(5)382.1763.595.884.351.36
    下载: 导出CSV
  • [1]

    Nan C W 2015 Sci. Sin. Tech. 45 339Google Scholar

    [2]

    Meng K, Li W, Tang X G, Liu Q X, Jiang Y P 2021 ACS Appl. Electron. Mater. 4 9216Google Scholar

    [3]

    Khasbulatov S, Kallaev S, Gadjiev H, Omarov Z, Bakmaev A, Verbenko I, Pavelko A, Reznichenko L 2020 J. Adv. Dielectr. 10 2060019Google Scholar

    [4]

    Wang D W, Wang G, Murakami S, Fan Z, Feteira A, Zhou D, Sun S, Zhao Q, Reaney I M 2018 J. Adv. Dielectr. 8 1830004Google Scholar

    [5]

    Xun B, Song A, Yu J, Yin Y, Li J F, Zhang B P 2021 ACS Appl. Mater. Interfaces 13 4192Google Scholar

    [6]

    Kim A Y, Lee Y J, Kim J S, Han S H, Kang H W, Lee H G, Cheon C I 2012 J. Korean Phys. Soc. 60 83Google Scholar

    [7]

    Wang D, Wang M, Liu F, Cui Y, Zhao Q, Sun H, Jin H, Cao M 2015 Ceram. Int. 41 8768Google Scholar

    [8]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113Google Scholar

    [9]

    Lebeugle D, Colson D, Forget A, Vire M 2007 Appl. Phys. Lett. 91 022907Google Scholar

    [10]

    Khesro A, Boston R, Sterianou I, Sinclair D C, Reaney I M 2016 J. Appl. Phys. 119 054101Google Scholar

    [11]

    Leontsev S O, Eitel R E 2009 J. Am. Ceram. Soc. 92 2957Google Scholar

    [12]

    Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855Google Scholar

    [13]

    Chaudhary P, Shukla R, Dabas S, Thakur O P 2021 J. Alloys Compd. 869 159228Google Scholar

    [14]

    Wan Y, Li Y, Li Q, Zhou W, Zheng Q, Wu X, Xu C, Zhu B, Lin D, Jones J 2014 J. Am. Ceram. Soc. 97 1809Google Scholar

    [15]

    Chen Z, Bai X, Wang H, Du J, Bai W, Li L, Wen F, Zheng P, Wu W, Zheng L, Zhang Y 2020 Ceram. Int. 46 11549Google Scholar

    [16]

    Lu Z, Wang G, Bao W, Li J, Li L, Mostaed A, Yang H, Ji H, Li D, Feteira A, Xu F, Sinclair D C, Wang D, Liu S Y, Reaney I M 2020 Energy Environ. Sci. 13 2938Google Scholar

    [17]

    Calisir I, Amirov A A, Kleppe A K, Hall D A 2018 J. Mater. Chem. A 6 5378Google Scholar

    [18]

    Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2008 Ceram. Int. 34 797Google Scholar

    [19]

    Yang H, Zhou C, Liu X, Zhou Q, Chen G, Li W, Wang H 2013 J. Eur. Ceram. Soc. 33 1177Google Scholar

    [20]

    Li Q, Wei J X, Cheng J R, Chen J G 2017 J. Mater. Sci. 52 229Google Scholar

    [21]

    Li Q, Cheng J R, Chen J G 2017 J. Mater. Sci. :Mater. Electron. 28 1370Google Scholar

    [22]

    Alpay S P, Mantese J, Trolier-McKinstry S, Zhang Q, Whatmore R W 2014 MRS Bull. 39 1099Google Scholar

    [23]

    Jian X D, Lu B, Li D D, Yao Y B, Tao T, Liang B, Guo J H, Zeng Y J, Chen J L, Lu S G 2018 ACS Appl. Mater. Interfaces 10 4801Google Scholar

    [24]

    Neese B, Chu B, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821Google Scholar

    [25]

    鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波 2020 物理学报 69 127701Google Scholar

    Lu S G, Li D D, Lin X W, Jian X D, Zhao X B, Yao Y B, Tao T, Liang B 2020 Acta Phys. Sin. 69 127701Google Scholar

    [26]

    Larson A C, Von Dreele R B 2004 General Structure Analysis System (GSAS) Los Alamos: Los Alamos National Laboratory Report LAUR p86

    [27]

    Toby H 2001 J. Appl. Crystallogr. 34 210Google Scholar

    [28]

    Niu X, Jian X, Chen X, Li H, Liang W, Liang B, Lu S G 2021 J. Adv. Ceram. 10 482Google Scholar

    [29]

    Dicastro V, Polzobetti G 1989 J. Electron Spectrosc. Relat. Phenom. 48 117Google Scholar

    [30]

    Allen G C, Harris S J, Jutson J A 1989 Appl. Surf. Sci. 37 111Google Scholar

    [31]

    Zhang X, Hu D, Pan Z, Lv X, He Z, Yang F, Li P, Liu J, Zhai J 2021 Chem. Eng. J. 406 126818Google Scholar

    [32]

    Basso V, Gerard J F, Pruvost S 2014 Appl. Phys. Lett. 105 052907Google Scholar

    [33]

    Lu B, Jian X, Lin X, Yao Y, Tao T, Liang B, Luo H, Lu S G 2020 Crystals 10 451Google Scholar

  • [1] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟. 物理学报, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [2] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应. 物理学报, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [4] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [5] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响. 物理学报, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [6] 蔡田怡, 雎胜. 铁电体的光伏效应. 物理学报, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [7] 刘永广, 康爱国, 张少飞, 侯志文, 刘文斌. 钛酸钡纳米颗粒铁电性临界尺寸的理论分析. 物理学报, 2015, 64(17): 177702. doi: 10.7498/aps.64.177702
    [8] 王辉, 林春江, 李盛涛, 李建英. CaCu3Ti4O12 陶瓷松弛损耗机理研究. 物理学报, 2013, 62(8): 087702. doi: 10.7498/aps.62.087702
    [9] 尚玉黎, 舒明飞, 陈威, 曹万强. 钛酸钡基施主掺杂弛豫铁电体介电弥散的唯象分析. 物理学报, 2012, 61(19): 197701. doi: 10.7498/aps.61.197701
    [10] 尚勋忠, 陈威, 曹万强. 弛豫铁电体介电可调性的研究. 物理学报, 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [11] 吴筱毅, 熊小敏, 张进修. 扭转应变谱及其在相变研究中的应用. 物理学报, 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [12] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响. 物理学报, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [13] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进. 物理学报, 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [14] 常方高, 宋桂林, 房 坤, 王照奎. 氧含量对BiFeOδ多晶陶瓷介电特性的影响. 物理学报, 2007, 56(10): 6068-6074. doi: 10.7498/aps.56.6068
    [15] 王渊旭, 王春雷, 袁 敏, 赵明磊, 钟维烈. 光折变晶体KTa0.5Nb0.5O3光学特性的第一性原理研究. 物理学报, 2004, 53(9): 3141-3145. doi: 10.7498/aps.53.3141
    [16] 王渊旭, 王春雷, 钟维烈, 赵明磊, 李吉超, 薛旭艳. SrHfO3和SrTiO3光学特性的第一性原理研究. 物理学报, 2004, 53(1): 214-217. doi: 10.7498/aps.53.214
    [17] 胡 颖, 张存林, 沈京玲, 张希成. (100)MgO和(100)LaAlO3高温超导基片材料THz时域光谱研究. 物理学报, 2004, 53(6): 1772-1776. doi: 10.7498/aps.53.1772
    [18] 冯全源. 高取向度的毫米波锶钙六角多晶铁氧体. 物理学报, 2002, 51(11): 2612-2616. doi: 10.7498/aps.51.2612
    [19] 王渊旭, 钟维烈, 王春雷, 张沛霖. 四方铁电体PbFe0.5Nb0.5O3精细结构的第一性原理研究. 物理学报, 2002, 51(1): 171-173. doi: 10.7498/aps.51.171
    [20] 王永令, 袁万宗, 何国荣, 林盛卫, 凌荣华, 瞿翠凤. 铁电体爆-电换能的实验研究. 物理学报, 1983, 32(6): 780-785. doi: 10.7498/aps.32.780
计量
  • 文章访问数:  5261
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-03-21
  • 上网日期:  2022-07-13
  • 刊出日期:  2022-07-20

/

返回文章
返回