-
表面等离激元与量子发射体间的强耦合现象近几年来受到广泛关注,这种现象通常通过散射、 吸收、 荧光等远场光谱探测方法进行研究。 利用高度聚焦的电子束, 电子能量损失谱能够实现亚纳米尺度的局域探测,可以更加有效的研究强耦合现象。 本文在理论上分别模拟了银纳米棒、介质材料以及介质层包裹银纳米棒复合结构的电子能量损失谱。 得到了与实验结果可以比拟的银纳米棒表面等离激元的电子能量损失谱。 在上述复合结构的电子能量损失谱中观察到了谱峰的拉比劈裂, 探究了银纳米棒尺寸对拉比劈裂的影响。 分别在红外、 可见波段讨论了介质层的元激发与银纳米棒偶极辐射及高阶非辐射表面等离激元模式间的强耦合现象, 从损失谱的空间分布成像角度探讨了强耦合引起的杂化等离激子( Plexciton) 的形成。 本研究对强耦合现象的进一步实验和理论研究具有指导意义。The strong coupling phenomenon between surface plasmons and quantum emitters has received extensive attention in recent years. It is usually studied by far-field spectral detection methods such as scattering, absorption, and fluorescence. Electron energy loss spectroscopy(EELS) utilizes highly focused electron beams for local detection at sub-nanometer scale, which can be more effective for strong coupling studies. In this paper, the EELS of silver nanorods, dielectric materials and their composite core-shell nanostructures were theoretically simulated respectively, and the energy and mode characteristics of surface plasmons on the silver nanorods and the excitation characteristics of dielectric materials were obtained. The EELS of surface plasmon is basically consistent with the related experiments. Rabi splitting of spectral peaks was observed in the EELS of the above composite structures, and the effect of Ag nanorod size on Rabi splitting was explored. The strong coupling between the radiative dipolar and non-radiative higher-order plasmon with the excitation of the dielectric materials in the infrared and visible band is discussed, and the corresponding dispersion relation is analyzed with the coupled oscillator mode. Furthermore, the plexciton caused by strong coupling are discussed from the perspective of spatial distribution of loss spectrum imaging. Our study builds the basis for further theoretical study, and can guide the further experimental research.
-
Keywords:
- EELS /
- surface plasmon /
- strong coupling
-
[1] Hamann, H F, Kuno, M, Gallagher, A, Nesbitt, D J 2001 J. Chem.Phys. 114 8596.
[2] Hartschuh, A, Sanchez, E J, Xie, X S, Novotny, L 2003 Phys. Rev.Lett. 90 095503.
[3] Fleischmann, M, Hendra, P J, McQuillan, A J 1974 Chem. Phys. Lett. 26 163-166.
[4] Nie, S, Emory, S R 1997 Science 275 1102-1106.
[5] Osawa, M, Ikeda 1991 J. Phys. Chem. 95 9914-9919.
[6] Hirsch, L, Stafford, R J, Bankson, J A, Sershen 2003 Proc. Natl. Acad. Sci. 100 13549-13554.
[7] Cao, Y C, Jin, R, Mirkin, C A 2002 Science 297 1536.
[8] D Rossouw,M Couillard,J Vickery,E Kumacheva,G A Botton 2011 Nano Lett. 11 1499-1504.
[9] J Aizpurua,P Hanarp,D S Sutherland M Kall,Garnett W Bryant, F Javier García de Abajo 2002 Phys. Rev.Lett. 90 057401.
[10] Andrew B Yankovich,Battulga Munkhbat,Denis G Baranov,Jorge Cuadra,Erik Olsén,Hugo Lourenço-Martins,Luiz H G Tizei,Mathieu Kociak,Eva Olsson,Timur Shegai 2019 Nano Lett. 19 8171-8181.
[11] Matteo Zanfrognini,Enzo Rotunno,Stefano Frabboni,Alicia Sit,Ebrahim Karimi, Ulrich Hohenester, Vincenzo Grillo 2019 ACS Photonics 6 620-627.
[12] Benz,F,Schmidt,M K, Dreismann, A, Chikkaraddy,R, Zhang, Y,Demetriadou,A, Carnegie, C, Ohadi, H,De Nijs, B, Esteban, R, Aizpurua, J, Baumberg, J J 2016 Science 354 726-729.
[13] Lee, J, Tallarida, N, Chen, X, Liu, P, Jensen, L, Apkarian, V A 2017 ACS Nano 11 11466-11474.
[14] Carnegie, C, Griffiths, J, de Nijs, B, Readman, C,Chikkaraddy, R, Deacon, W M, Zhang, Y, Szabó,I, Rosta, E, Aizpurua, J, Baumberg, J J 2018 The Journal of Physical Chemistry Letters 9 7146-7151.
[15] Urbieta, M, Barbry, M, Zhang, Y, Koval, P, Sánchez-Portal, D, Zabala, N, Aizpurua, J 2018 ACS Nano 12 585-595.
[16] Doppagne, B, Neuman, T, Soria-Martinez, R, López,L E P, Bulou, H, Romeo, M, Berciaud, S, Scheurer,F, Aizpurua, J, Schull, G 2020 Nature Nanotechnology 15 207-211.
[17] Fan Nan,Ya-Fang Zhang,Xiaoguang Li,Xiao-Tian Zhang,Hang Li,Xinhui Zhang,Ruibin Jiang,Jianfang Wang,Wei Zhang,Li Zhou,Jia-Hong Wang,Qu-Quan Wang,Zhenyu Zhang 2015 Nano Lett. 15 2705-2710.
[18] Yangzhe Guo,Guodong Zhu, Yurui Fanga 2021 J. Appl. Phys. 129 043104.
[19] Jian Qin,Yu-Hui Chen,Zhepeng Zhang,Yanfeng Zhang,Richard J Blaikie,Boyang Ding,Min Qiu 2020 PhysRevLett. 124 063902.
[20] Peining Li, Xiaosheng Yang, Tobias W W Maß, Julian Hanss, Martin Lewin, Ann-Katrin U Michel, Matthias Wuttig, Thomas Taubner 2016 Nature Materials 15 870-875.
[21] Dr James A Hutchison, Dr Tal Schwartz, Dr Cyriaque Genet, Dr Eloïse Devaux, Prof Thomas W Ebbesen 2012 Angew. Chem. 51 1592-1596.
[22] Törmä, P, Barnes, W L 2015 Rep. Prog. Phys 78 013901.
[23] Andrea Konečná,Tomáš Neuman,Javier Aizpurua,Rainer Hillenbrand 2018 ACS Nano 12 4775-4786.
[24] Zhang, Y, Meng, Q-S, Zhang, L,Luo, Y,Yu, Y-J, Yang, B,Zhang, Y,Esteban, R, Aizpurua, J, Luo, Y, Yang, J-L, Dong, Z-C,Hou, J G 2017 Nat.Commun. 8 15225.
[25] Luiz H G Tizei, Vahagn Mkhitaryan, Hugo Lourenço-Martins, Leonardo Scarabelli, Kenji Watanabe,Takashi Taniguchi, Marcel Tencé, Jean-Denis Blazit, Xiaoyan Li, Alexandre Gloter, Alberto Zobelli,Franz-Philipp Schmidt, Luis M Liz-Marzán, F Javier García de Abajo, Odile Stéphan, Mathieu Kociak 2020 Nano Lett. 20 2973-2979.
[26] Haihua Liu, Thomas E. Gage, Prem Singh, Amit Jaiswal, Richard D. Schaller,Jau Tang, Sang Tae Park,Stephen K. Gray, Ilke Arslan 2021 Nano Lett. 21 5842-5849.
[27] Jiake Wei,Nan Jiang,Jia Xu,Xuedong Bai, Jingyue Liu 2015 Nano Lett. 15 5926-5931.
[28] Maureen J Lagos, Philip E Batson, Zihan Lyu, Ulrich Hohenester 2021 ACS Photonics 8 1293-1300.
[29] Grigorios P Zouros, Georgios D Kolezas, N Asger Mortensen, Christos Tserkezis 2020 Phys. Rev.B. 101 085416.
[30] Goodman, J J, Draine, B T, Flatau, P J 1991 Opt. Lett. 16 1198.
[31] KS Yee 1966 IEEE Transactions on Antennas & Propagation 14(5) 302-307.
[32] F Javier García de Abajo,A Howie 2002 Phys.Rev.B. 65 115418.
[33] Ulrich Hohenester 2014 Computer Physics Communications 185 1177-1187.
[34] Ulrich Hohenester,AndreasTrügler 2012 Computer Physics Communications 183 370-381.
[35] Johnson, P, Christy, R 1972 Phys. Rev. B 6 4370-4379.
[36] Maomao Zhang, Xueyi Shi, Xinyu Mu, Luxia Wang, Kun Gao 2021 Appl. Phys. Lett. 118 133301.
[37] Jordan A Hachtel, Jingsong Huang, Ilja Popovs, Santa Jansone-Popova, Jong K Keum, Jacek Jakowski, Tracy C Lovejoy, Niklas Dellby, Ondrej L Krivanek, Juan Carlos Idrobo 2019 Science 363 525-528.
[38] S. Rudin, T. L. Reinecke 1998 Phys.Rev.B. 59 10227-10233.
[39] A Manjavacas, F Javier García de Abajo, P Nordlander 2011 Nano Lett. 11 2318-2323.
[40] Marta Autore,Peining Li,Irene Dolado,Francisco J Alfaro-Mozaz,Ruben Esteban,Ainhoa Atxabal,Fèlix Casanova, Luis E Hueso, Pablo Alonso-González, Javier Aizpurua, Alexey Y Nikitin, Saül Vélez,Rainer Hillenbrand 2018 Light:Science & Applications 7 17172.
[41] Kotni Santhosh, Ora Bitton, Lev Chuntonov, Gilad Haran 2016 Nat.Commun. 10 1038.
[42] Rohit Chikkaraddy, Bart de Nijs, Felix Benz, Steven J Barrow, Oren A Scherman, Edina Rosta, Angela Demetriadou, Peter Fox, Ortwin Hess, Jeremy J Baumberg 2016 Nature 535 127-130.
计量
- 文章访问数: 218
- PDF下载量: 11
- 被引次数: 0