搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟

赵世杭 张元 吕思远 程少博 郑长林 王鹿霞

引用本文:
Citation:

电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟

赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞

Numerical simulation of strong coupling between silver nanorod and dielectric layer detected by electron energy loss spectrum

Zhao Shi-Hang, Zhang Yuan, Lü Si-Yuan, Cheng Shao-Bo, Zheng Chang-Lin, Wang Lu-Xia
PDF
HTML
导出引用
  • 表面等离激元与量子发射体间的强耦合现象通常通过散射、吸收以及荧光等远场光谱探测方法进行研究. 利用高度聚焦的电子束, 电子能量损失谱能够实现亚纳米尺度的局域探测, 可以更加有效地研究强耦合现象. 本文在理论上分别模拟了银纳米棒、介质材料以及介质层包裹银纳米棒复合结构的电子能量损失谱. 得到了可以与实验结果比拟的银纳米棒表面等离激元的电子能量损失谱. 在上述复合结构的电子能量损失谱中观察到了谱峰的拉比劈裂, 探究了银纳米棒尺寸对拉比劈裂的影响. 分别在红外、可见光波段讨论了介质层的元激发与银纳米棒偶极辐射及高阶非辐射表面等离激元模式间的强耦合现象, 从损失谱的空间分布成像角度探讨了强耦合引起的杂化等离激子(plexciton)的形成. 本研究对强耦合现象的进一步实验和理论研究具有指导意义.
    The strong coupling phenomenon between surface plasmons and quantum emitters has received extensive attention in recent years. It is usually studied by the far-field spectral detection method such as scattering, absorption, and fluorescence. In the electron energy loss spectroscopy (EELS), highly focused electron beams are used for implementing the local detection on a sub-nanometer scale, which can be more effective to study strong coupling. In this work, the electron energy loss spectrum of silver nanorods, dielectric materials and their composite core-shell nanostructures are theoretically simulated respectively, and the energy and mode characteristics of surface plasmons on the silver nanorods and the excitation characteristics of dielectric materials are obtained. The electron energy loss spectrum of surface plasmon is basically consistent with the related experimental result. Rabi splitting of spectral peaks is observed in the electron energy loss spectra of the above composite structures, and the effect of Ag nanorod size on Rabi splitting is explored. The strong coupling between the radiative dipolar and non-radiative higher-order plasmon with the excitation of the dielectric materials in the infrared and visible band is discussed, and the corresponding dispersion relation is analyzed with the coupled oscillator mode. Furthermore, the plexciton caused by strong coupling are discussed from the perspective of spatial distribution of loss spectrum imaging. Our study builds the basis for further theoretical study, and can guide the further experimental research.
      通信作者: 张元, yzhuaudipc@zzu.edu.cn ; 王鹿霞, luxiawang@sas.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21961132023, 12004344, 11774026, 61871134)资助的课题.
      Corresponding author: Zhang Yuan, yzhuaudipc@zzu.edu.cn ; Wang Lu-Xia, luxiawang@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961132023, 12004344, 11774026, 61871134).
    [1]

    Hamann H F, Kuno M, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 114 8596Google Scholar

    [2]

    Hartschuh A, Sanchez E J, Xie X S, Novotny L 2003 Phys. Rev. Lett. 90 095503Google Scholar

    [3]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [4]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [5]

    Osawa M, Ikeda 1991 J. Phys. Chem. 95 9914Google Scholar

    [6]

    Hirsch L, Stafford R J, Bankson J A, Sershen 2003 Proc. Natl. Acad. Sci. 100 13549Google Scholar

    [7]

    Cao Y C, Jin R, Mirkin C A 2002 Science 297 1536Google Scholar

    [8]

    Rossouw D, Couillard M, Vickery J, Kumacheva E, Botton G A 2011 Nano Lett. 11 1499Google Scholar

    [9]

    Aizpurua J, Hanarp P, Sutherland D S, Käll M, Bryant G W, García de Abajo F J 2003 Phys. Rev. Lett. 90 057401Google Scholar

    [10]

    Yankovich A B, Munkhbat B, Baranov D G, Cuadra J, Olsén E, Lourenço-Martins H, Tizei L H G, Kociak M, Eva Olsson, Shegai T 2019 Nano Lett. 19 8171Google Scholar

    [11]

    Zanfrognini M, Rotunno E, Frabboni S, Sit A, Karimi E, Hohenester U, Grillo V 2019 ACS Photon. 6 620Google Scholar

    [12]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R, Aizpurua J, Baumberg J J 2016 Science 354 726Google Scholar

    [13]

    Lee J, Tallarida N, Chen X, Liu P, Jensen L, Apkarian V A 2017 ACS Nano 11 11466Google Scholar

    [14]

    Carnegie C, Griffiths J, de Nijs B, Readman C, Chikkaraddy R, Deacon W M, Zhang Y, Szabó I, Rosta E, Aizpurua J, Baumberg J J 2018 J. Phys. Chem. Lett. 9 7146Google Scholar

    [15]

    Urbieta M, Barbry M, Zhang Y, Koval P, Sánchez-Portal D, Zabala N, Aizpurua J 2018 ACS Nano 12 585Google Scholar

    [16]

    Doppagne B, Neuman T, Soria-Martinez R, López L E P, Bulou H, Romeo M, Berciaud S, Scheurer F, Aizpurua J, Schull G 2020 Nature Nanotechnol. 15 207Google Scholar

    [17]

    Nan F, Zhang Y F, Li X G, Zhang X T, Hang Li H, Zhang X H, Jiang R B, Wang J F, Zhang W, Li Zhou, Wang J H, Wang Q Q, Zhang Z Y 2015 Nano Lett. 15 2705Google Scholar

    [18]

    Guo Y Z, Zhu G D, Fanga Y 2021 J. Appl. Phys. 129 043104Google Scholar

    [19]

    Qin J, Chen Y H, Zhang Z P, Zhang Y F, Blaikie R J, Ding B Y, Qiu M 2020 Phys. Rev. Lett. 124 063902Google Scholar

    [20]

    Li P N, Yang X S, Maß T W W, Hanss J, Lewin M, Ann-Katrin U Michel, Wuttig M, Taubner T 2016 Nature Mater. 15 870Google Scholar

    [21]

    Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W 2012 Angew. Chem. 51 1592Google Scholar

    [22]

    Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [23]

    Konečná A, Neuman T, Aizpurua J, Hillenbrand R 2018 ACS Nano 12 4775Google Scholar

    [24]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [25]

    Tizei L H G, Mkhitaryan V, Lourenço-Martins H, et al. 2020 Nano Lett. 20 2973Google Scholar

    [26]

    Liu H H, Gage T E, Singh P, Jaiswal A, Schaller R D, Tang J, Park S T, Gray S K, Arslan I 2021 Nano Lett. 21 5842Google Scholar

    [27]

    Wei J K, Jiang N, Xu J, Bai X D, Liu J Y 2015 Nano Lett. 15 5926Google Scholar

    [28]

    Lagos M J, Batson P E, Lyu Z, Hohenester U 2021 ACS Photon. 8 1293Google Scholar

    [29]

    Zouros G P, Kolezas G D, N Asger Mortensen, Christos Tserkezis 2020 Phys. Rev. B 101 085416Google Scholar

    [30]

    Goodman J J, Draine B T, Flatau P J 1991 Opt. Lett. 16 1198Google Scholar

    [31]

    Yee K S 1966 IEEE T. Antenn. Propag. 14 302Google Scholar

    [32]

    de Abajo F J G, Howie A 2002 Phys. Rev. B 65 115418Google Scholar

    [33]

    Hohenester U 2014 Computer Phys. Commun. 185 1177Google Scholar

    [34]

    Hohenester U, Trügler A 2012 Computer Phys. Commun. 183 370Google Scholar

    [35]

    Johnson P, Christy R 1972 Phys. Rev. B 6 4370Google Scholar

    [36]

    Maomao Zhang, Xueyi Shi, Xinyu Mu, Luxia Wang, Kun Gao 2021 Appl. Phys. Lett. 118 133301Google Scholar

    [37]

    Hachtel J A, Huang J S, Popovs I, Jansone-Popova S, Keum J K, Jakowski J, Lovejoy T C, Dellby N, Krivanek O L, Idrobo J C 2019 Science 363 525Google Scholar

    [38]

    Rudin S, Reinecke T L 1999 Phys. Rev. B 59 10227

    [39]

    Manjavacas A, de Abajo F J G, Nordlander P 2011 Nano Lett. 11 2318Google Scholar

    [40]

    Autore M, Li P, Dolado I, et al. 2018 Light:Science & Applications 7 17172

    [41]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 10 1038Google Scholar

    [42]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

  • 图 1  银纳米棒-介质层系统的电子损失探测示意图. 电子束沿z轴负方向入射, 作用于纳米核壳结构上, 出射电子能量损失谱表征体系支持的激发. 核壳结构的长度为$ l = 481{\text{ nm}} $, 核心部分为直径$ {\text{2}}r{\text{ = 20 nm}} $的银纳米棒, 介质层厚度$ h{\text{ = 20 nm}} $; 右图为强耦合导致电子能量损失谱中峰的拉比劈裂, 以及劈裂峰对应的能量损失空间分布图

    Fig. 1.  Schematic diagram of electron loss detection of silver nanorod-dielectric layer system. The incident electron beam is along the negative direction of z axis and acts on the core-shell nano-structure with length l = 481 nm, and the electron energy loss spectrum characterizes the excitation supported by the system. The nanostructure is made of a silver nanorod core with a diameter $ {\text{2}}r{\text{ = 20 nm}} $ and a dielectric layer with a thickness of $ h{\text{ = 20 nm}} $. The figure on the right side shows the Rabi splitting of the peak in the electron energy loss spectrum caused by strong coupling, and the spatial map of the energy loss corresponding to the splitting peaks.

    图 2  实验测量和理论模拟的银纳米棒 (a), (b) 电子能量损失谱及(c), (d)不同损失能量下的空间成像的对比 (a), (c) 实验测量结果[8]; (b), (d) 理论模拟结果

    Fig. 2.  Comparison of experimental measurements and theoretical simulations of electron energy loss spectrum (a), (b) and electron energy loss spatial distribution map under different loss energies (c), (d) of silver nanorods: (a), (c) Experimental measurements[8]; (b), (d) theoretical simulations.

    图 3  电子束作用于银纳米棒的(a)尖端, (b)中部和(c) 1/3长度处的电子能量损失谱; 电子束作用于银纳米棒不同位置不同激发能量的归一化电场分布 (d)尖端, 0.65 eV; (e)中间, 1.08 eV; (f) 1/3处, 1.46 eV

    Fig. 3.  Electron energy loss spectrum for an electron beam at the (a) tip, (b) middle and (c) 1/3 length of a silver nanorod; the normalized electric field distribution with different excited energy by the electron beam acting on the different positions of the silver nanorod: (d) Tip, 0.65 eV; (e) middle, 1.08 eV; (f) 1/3 of the length, 1.46 eV.

    图 4  通过改变银纳米棒尺寸来主动调控表面等离激元激发 (a) 直径20 nm不变, 改变银纳米棒的长度, 在棒的尖端激发得到的一系列电子能量损失谱; (b)长度481 nm不变, 改变纳米棒的直径, 在尖端激发得到的一系列电子能量损失谱; (c)偶极表面等离激元激发能量随银纳米棒长度的倒数(π/L)的比例关系

    Fig. 4.  Actively regulate surface plasmon excitation by changing the size of silver nanorods: (a) Electron energy loss spectrum obtained from an electron beam acting on a silver nanorod with the fixed diameter 20 nm and increasing length; (b) the electron energy loss spectrum obtained from an electron beam acting on a silver nanorod with fixed length 481 nm and increasing diameter; (c) dipole plasmon excitation energy as a function of the inverse of the silver nanorod length (π/L).

    图 5  介质层介电函数的(a)实部和(b)虚部随能量的变化(R.P.指相对介电常数); 0.58 eV处介质层的(c)电子能量损失谱和(d)电子能量损失空间分布图

    Fig. 5.  Real (a) and imaginary (b) parts of the dielectric layer dielectric function as a function of energy (R. P. refers to relative permittivity); (c) the electron energy loss spectrum and (d) the electron energy loss spatial distribution map of the dielectric layer at 0.58 eV energy.

    图 6  利用EELS探测红外波段偶极辐射表面等离激元模式和介质层的强耦合 (a)电子束作用于介质层尖端(黑实线), 银纳米棒尖端(红虚线)及银纳米棒-介质层核壳结构尖端(蓝色点线)的电子能量损失谱; 红移后偶极表面等离激元与介质层的元激发能量(b)零失谐与(c)失谐时, 在不同能量处劈裂峰对应的电子能量损失概率空间成像

    Fig. 6.  Strong coupling between the infrared radiation dipole surface plasmon mode and the dielectric layer detected by EELS: (a) Electron energy loss spectrum of an electron beam acting on the tip of the dielectric layer (black solid line), the tip of silver nanorods (red dotted line) and the tip of the silver nanorod-dielectric layer core-shell structure (blue dotted line); spatial distribution of electron energy loss probability for two splitting peaks with different energies when the surface plasmon energy is (b) zero detuned and (c) detuned from the meta excitation energy of the dielectric layer.

    图 7  不同波段辐射偶极和非辐射高级表面等离激元与介质层元激发间强耦合导致的反交叉色散关系 (a), (b) 直径为20 nm、不同长度的银纳米棒-介质层核壳结构的电子能量损失谱 (虚线标注了上、下杂化等离激子的能量) (a) 红外波段; (b) 可见波段; (c), (d) 对应的杂化等离激子能量的色散关系 (横虚线为介质层激发能量, 斜虚线为银纳米棒的偶极(m = 1, 4)表面等离激元能量)

    Fig. 7.  Anti-crossing dispersion relationship caused by the strong coupling between the radiative dipolar and non-radiative higher-order plasmon in different range and the excitation of dielectric layer. (a), (b) Electron energy loss spectrum of silver nanorod-dielectric layer core-shell structures with a diameter of 20 nm and different lengths (The dotted lines mark the energies of the upper and lower plexciton): (a) Infrared range; (b) visible range; (c), (d) corresponding dispersion relationship of the plexciton energy (The horizontal dotted line is the excitation energy of the dielectric layer, and the oblique line is the energy of dipole (m = 1, 4) radiative plasmon of the silver nanorod).

  • [1]

    Hamann H F, Kuno M, Gallagher A, Nesbitt D J 2001 J. Chem. Phys. 114 8596Google Scholar

    [2]

    Hartschuh A, Sanchez E J, Xie X S, Novotny L 2003 Phys. Rev. Lett. 90 095503Google Scholar

    [3]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [4]

    Nie S, Emory S R 1997 Science 275 1102Google Scholar

    [5]

    Osawa M, Ikeda 1991 J. Phys. Chem. 95 9914Google Scholar

    [6]

    Hirsch L, Stafford R J, Bankson J A, Sershen 2003 Proc. Natl. Acad. Sci. 100 13549Google Scholar

    [7]

    Cao Y C, Jin R, Mirkin C A 2002 Science 297 1536Google Scholar

    [8]

    Rossouw D, Couillard M, Vickery J, Kumacheva E, Botton G A 2011 Nano Lett. 11 1499Google Scholar

    [9]

    Aizpurua J, Hanarp P, Sutherland D S, Käll M, Bryant G W, García de Abajo F J 2003 Phys. Rev. Lett. 90 057401Google Scholar

    [10]

    Yankovich A B, Munkhbat B, Baranov D G, Cuadra J, Olsén E, Lourenço-Martins H, Tizei L H G, Kociak M, Eva Olsson, Shegai T 2019 Nano Lett. 19 8171Google Scholar

    [11]

    Zanfrognini M, Rotunno E, Frabboni S, Sit A, Karimi E, Hohenester U, Grillo V 2019 ACS Photon. 6 620Google Scholar

    [12]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R, Aizpurua J, Baumberg J J 2016 Science 354 726Google Scholar

    [13]

    Lee J, Tallarida N, Chen X, Liu P, Jensen L, Apkarian V A 2017 ACS Nano 11 11466Google Scholar

    [14]

    Carnegie C, Griffiths J, de Nijs B, Readman C, Chikkaraddy R, Deacon W M, Zhang Y, Szabó I, Rosta E, Aizpurua J, Baumberg J J 2018 J. Phys. Chem. Lett. 9 7146Google Scholar

    [15]

    Urbieta M, Barbry M, Zhang Y, Koval P, Sánchez-Portal D, Zabala N, Aizpurua J 2018 ACS Nano 12 585Google Scholar

    [16]

    Doppagne B, Neuman T, Soria-Martinez R, López L E P, Bulou H, Romeo M, Berciaud S, Scheurer F, Aizpurua J, Schull G 2020 Nature Nanotechnol. 15 207Google Scholar

    [17]

    Nan F, Zhang Y F, Li X G, Zhang X T, Hang Li H, Zhang X H, Jiang R B, Wang J F, Zhang W, Li Zhou, Wang J H, Wang Q Q, Zhang Z Y 2015 Nano Lett. 15 2705Google Scholar

    [18]

    Guo Y Z, Zhu G D, Fanga Y 2021 J. Appl. Phys. 129 043104Google Scholar

    [19]

    Qin J, Chen Y H, Zhang Z P, Zhang Y F, Blaikie R J, Ding B Y, Qiu M 2020 Phys. Rev. Lett. 124 063902Google Scholar

    [20]

    Li P N, Yang X S, Maß T W W, Hanss J, Lewin M, Ann-Katrin U Michel, Wuttig M, Taubner T 2016 Nature Mater. 15 870Google Scholar

    [21]

    Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W 2012 Angew. Chem. 51 1592Google Scholar

    [22]

    Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [23]

    Konečná A, Neuman T, Aizpurua J, Hillenbrand R 2018 ACS Nano 12 4775Google Scholar

    [24]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [25]

    Tizei L H G, Mkhitaryan V, Lourenço-Martins H, et al. 2020 Nano Lett. 20 2973Google Scholar

    [26]

    Liu H H, Gage T E, Singh P, Jaiswal A, Schaller R D, Tang J, Park S T, Gray S K, Arslan I 2021 Nano Lett. 21 5842Google Scholar

    [27]

    Wei J K, Jiang N, Xu J, Bai X D, Liu J Y 2015 Nano Lett. 15 5926Google Scholar

    [28]

    Lagos M J, Batson P E, Lyu Z, Hohenester U 2021 ACS Photon. 8 1293Google Scholar

    [29]

    Zouros G P, Kolezas G D, N Asger Mortensen, Christos Tserkezis 2020 Phys. Rev. B 101 085416Google Scholar

    [30]

    Goodman J J, Draine B T, Flatau P J 1991 Opt. Lett. 16 1198Google Scholar

    [31]

    Yee K S 1966 IEEE T. Antenn. Propag. 14 302Google Scholar

    [32]

    de Abajo F J G, Howie A 2002 Phys. Rev. B 65 115418Google Scholar

    [33]

    Hohenester U 2014 Computer Phys. Commun. 185 1177Google Scholar

    [34]

    Hohenester U, Trügler A 2012 Computer Phys. Commun. 183 370Google Scholar

    [35]

    Johnson P, Christy R 1972 Phys. Rev. B 6 4370Google Scholar

    [36]

    Maomao Zhang, Xueyi Shi, Xinyu Mu, Luxia Wang, Kun Gao 2021 Appl. Phys. Lett. 118 133301Google Scholar

    [37]

    Hachtel J A, Huang J S, Popovs I, Jansone-Popova S, Keum J K, Jakowski J, Lovejoy T C, Dellby N, Krivanek O L, Idrobo J C 2019 Science 363 525Google Scholar

    [38]

    Rudin S, Reinecke T L 1999 Phys. Rev. B 59 10227

    [39]

    Manjavacas A, de Abajo F J G, Nordlander P 2011 Nano Lett. 11 2318Google Scholar

    [40]

    Autore M, Li P, Dolado I, et al. 2018 Light:Science & Applications 7 17172

    [41]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 10 1038Google Scholar

    [42]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

  • [1] 李远芳, 姜园, 赵磊. 基于改进强耦合振子的微弱脉冲信号检测方法. 物理学报, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [2] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [4] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [5] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [6] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [9] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [10] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [12] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [13] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用. 物理学报, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [14] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [15] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [16] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [17] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [18] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 杨卫国, 章晓中, 袁 俊. 一种由电子能量损失谱计算过渡金属d电子数的优化方法. 物理学报, 2006, 55(7): 3413-3419. doi: 10.7498/aps.55.3413
计量
  • 文章访问数:  3273
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-03-15
  • 上网日期:  2022-07-04
  • 刊出日期:  2022-07-20

/

返回文章
返回