搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应

郭绮琪 陈溢杭

引用本文:
Citation:

基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应

郭绮琪, 陈溢杭

Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons

Guo Qi-Qi, Chen Yi-Hang
PDF
HTML
导出引用
  • 非线性光学效应在光通信、光探测、量子信息等领域发挥着举足轻重的作用, 然而天然材料的光学非线性响应通常很弱. 本文利用氧化铟锡(ITO)薄膜激发的介电常数近零模式, 与金属-介质-金属结构激发的间隙表面等离激元发生强耦合, 在近红外波段实现宽带(约1000 nm)的增强非线性光学效应, 其非线性折射率n 2的最大值可达3.02 cm2/GW, 与之前报道的单层ITO薄膜的非线性折射率相比, 增大了接近3个数量级. 因此, 可在低功率光照下得到显著的折射率变化, 可望应用于全光存储、全光开关等纳米光子器件的设计.
    Optical nonlinear effect plays an important role in optical communication, optical detection, quantum information and other areas. However, it is constrained by the weakness of the nonlinear optical response of the common materials. The enhancement of the optical nonlinear response on a nanoscale becomes a critical challenge. Over the years, several ways to enhance the optical nonlinear effects have been suggested. In fact, these technologies can slightly enhance the optical nonlinear response. Recently, some research groups focused on the materials with vanished permittivity, which is called epsilon-near-zero (ENZ) material, showing that it can exhibit large optical nonlinearity due to the field enhancement in the material of this type. However, the ENZ material only holds a large optical nonlinear response in a limited spectral range. In order to overcome this limitation, here in this paper we report the ENZ mode which is excited by the ITO film and strongly coupled to the gap surface plasmons excited by the metal-dielectric-metal structure. To acquire the nonlinear refractive index n2, we first calculate the ITO permittivity through the Drude-Lorentz model and find the wavelength of the ENZ material. Then we calculate the time-dependent electron temperature and lattice temperature of ITO by the two-temperature model. According to the elevated electron temperature, we can calculate the plasma frequency ${\omega _{\rm p}}$, and by taking it into the Drude-Lorentz model, we can obtain a new permittivity of ITO compared with the initial one. Finally, we can calculate the variation of the refractive index $ \Delta n $, and the nonlinear refractive index $ {n_2} = \Delta n/{I_0} $. In this paper, our coupled structure exhibits a broadband (~1000 nm bandwidth) enhancement of the nonlinear optical effect in the near-infrared spectrum, a maximum nonlinear refractive index n2 as large as 3.02 cm2·GW–1, which is nearly 3 orders larger than the previously reported nonlinear refractive index of bare ITO film. As a result, it is possible to realize a dramatically large variation of nonlinear refractive index under a low-power optical field. It is expected to be used in the nano photonic devices such as optical storage, all-optical switches, etc.
      通信作者: 陈溢杭, yhchen@scnu.edu.cn
    • 基金项目: 广东省自然科学基金(批准号: 2015A030311018, 2017A030313035)和广州市科技计划(批准号: 2019050001)资助的课题
      Corresponding author: Chen Yi-Hang, yhchen@scnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2015A030311018, 2017A030313035) and the Science and Technology Program of Guangzhou, China (Grant No. 2019050001)
    [1]

    Boyd R W, Gehr R J, Fischer G L, Sipe J E 1996 Pure Appl. Optics J. European Optical Society Part A 5 505Google Scholar

    [2]

    Boyd R W, Sipe J E 1994 J. Opt. Soc. Am. B 11 297Google Scholar

    [3]

    Sarychev A K, Shalaev V M 2000 Phys. Rep. 335 275Google Scholar

    [4]

    Abb M, Albella P, Aizpurua J, Muskens O L 2011 Nano Lett. 11 2457Google Scholar

    [5]

    Abb M, Wang Y, De Groot CH, Muskens O L 2014 Nat.Commun. 5 4869Google Scholar

    [6]

    Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F, Boehm G, Amann MC, Alù A, Belkin M A 2014 Nature 511 65Google Scholar

    [7]

    Yang Y, Wang W, Boulesbaa A, Kravchenko I I, Briggs D P, Puretzky A, Geohegan D, Valentine J 2015 Nano Lett. 15 7388Google Scholar

    [8]

    Alexander E M, Andrey E M, Anton Y B, Tatiana V M, Dragomir N N, Yuri S K 2015 Laser Photonics Rev. 9 195Google Scholar

    [9]

    Engheta N 2013 Science 340 286Google Scholar

    [10]

    Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [11]

    Maas R, Parsons J, Engheta N, Polman A 2013 Nat. Photonics 7 907Google Scholar

    [12]

    Capretti A, Wang Y, Engheta N, Dal Negro L 2015 Opt. Lett. 40 1500Google Scholar

    [13]

    Capretti A, Wang Y, Engheta N, Dal Negro L 2015 Acs Photonics 2 1584

    [14]

    Caspani L, Kaipurath R, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Falco AD, Shalaev V 2016 Phys. Rev. Lett. 116 233901Google Scholar

    [15]

    Alam M Z, Leon I D, Boyd R W 2016 Science 352 795Google Scholar

    [16]

    Vassant S, Hugonin J P, Marquier F, Greffet J J 2012 Opt. Express 20 23971Google Scholar

    [17]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar

    [18]

    Hendrickson J R, Vangala S, Dass C K, Gibson R, Goldsmith J, Leedy K D, Walker D, Cleary J, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar

    [19]

    Luk T S, Ceglia D D, Liu S, Keeler G A, Prasankumar R P, Vincenti M A, Scalora M, Sinclair M B, Campione S 2015 Appl. Phys. Lett. 106 151103

    [20]

    Zhou Y, Alam M Z, Karimi M, Upham J, Boyd R W 2020 Nat. Commun. 11 2180

    [21]

    Vial A, Grimault A S, Macias D, Barchiesi D, Chapelle M L D L 2005 Phys. Rev. B 71 85416Google Scholar

    [22]

    Alam M Z, Schulz S A, Upham J, De Leon I, Boyd R W 2018 Nat. Photonics 12 79Google Scholar

    [23]

    Carpene E 2006 Phys. Rev. B 74 4301Google Scholar

    [24]

    Törmä1 P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [25]

    Runnerstrom E L, Kelley K P, Folland T, Nolen J R, Engheta N, Caldwell J D, Jon-Paul M 2019 Nano Lett. 19 948Google Scholar

    [26]

    Palik, Edward D 1985 Handbook of optical constants of solids (Academic Press) pp350, 749

    [27]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 72 036617Google Scholar

  • 图 1  器件结构设计图, 包含银圆盘、ITO材料层、二氧化硅介质层、银膜层以及硅基底(未画出) (a)三维结构图; (b)平面结构图及对应参数的示意图

    Fig. 1.  Design of the device, including the silver disc, the ITO material layer, the SiO2 dielectric spacer layer, the silver film layer, and the silicon substrate (not drawn in the figure): (a) Three-dimensional structure; (b) the planar graph and parameter of the structure.

    图 2  ITO材料的介电常数的实部(黑色线)与虚部(红色线)

    Fig. 2.  Real part (black line) and the imaginary part (red line) of permittivity of the ITO.

    图 3  FDTD模拟扫描计算得到的耦合结构的反射率随银圆盘半径的变化 (a)无ITO材料层; (b)有ITO材料层; (c)由单独ENZ模式与单独间隙表面等离激元的色散曲线(红色点划线)得到的强耦合作用产生的上支和下支色散曲线(黑色实线)

    Fig. 3.  Reflectance of the coupled structure vs. the radius of the silver disc by using FDTD solutions: (a) Without ITO material layer; (b) with ITO material layer; (c) theoretical dispersion curves of coupled upper branch and lower branch (black solid lines) resulting from strong coupling obtained by the bare ENZ mode and GPP dispersion curves (red dot dash lines).

    图 4  ITO中激发的ENZ模式与间隙表面等离极化激元强耦合的电磁场分布图 (a)−(d)负失谐; (e)−(h)零失谐; (i)−(l)正失谐

    Fig. 4.  Electric and magnetic field distribution of the strong coupling between the ENZ mode that excited in the ITO film and the GPP: (a)−(d) Negative detuning; (e)−(h) zero detuning; (i)−(l) positive detuning.

    图 5  (a)耦合结构的反射谱; (b)−(d)主共振位置(1180 nm)处总电场、电场x分量以及z分量分布

    Fig. 5.  (a) Reflectance spectrum of the coupled structure; (b)−(d) the total electric field, the x-component, the z-component distribution at the main resonance (1180 nm) respectively.

    图 6  (a)通过双温模型计算得到的电子温度Te(t)和晶格温度Tl(t); (b)非线性折射率n 2, 黑线为文中结构的非线性折射率, 红点为文献[15]报道的单层ITO薄膜的n 2值乘以200倍, 蓝色点线为文献[15]单层ITO薄膜结构通过双温模型理论计算得到的n 2值乘以200倍

    Fig. 6.  (a) Calculated electron temperature and lattice temperature through the two-temperature model; (b) nonlinear refractive index n 2, where the black line represents the n 2 of the coupled structure, the red dots represent 200 times of the n 2 of bare ITO film reported in Ref. [15], the blue dot line represents 200 times of the calculated theoretical value of n 2 of bare ITO film reported in Ref. [15] by two-temperature model.

  • [1]

    Boyd R W, Gehr R J, Fischer G L, Sipe J E 1996 Pure Appl. Optics J. European Optical Society Part A 5 505Google Scholar

    [2]

    Boyd R W, Sipe J E 1994 J. Opt. Soc. Am. B 11 297Google Scholar

    [3]

    Sarychev A K, Shalaev V M 2000 Phys. Rep. 335 275Google Scholar

    [4]

    Abb M, Albella P, Aizpurua J, Muskens O L 2011 Nano Lett. 11 2457Google Scholar

    [5]

    Abb M, Wang Y, De Groot CH, Muskens O L 2014 Nat.Commun. 5 4869Google Scholar

    [6]

    Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F, Boehm G, Amann MC, Alù A, Belkin M A 2014 Nature 511 65Google Scholar

    [7]

    Yang Y, Wang W, Boulesbaa A, Kravchenko I I, Briggs D P, Puretzky A, Geohegan D, Valentine J 2015 Nano Lett. 15 7388Google Scholar

    [8]

    Alexander E M, Andrey E M, Anton Y B, Tatiana V M, Dragomir N N, Yuri S K 2015 Laser Photonics Rev. 9 195Google Scholar

    [9]

    Engheta N 2013 Science 340 286Google Scholar

    [10]

    Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058Google Scholar

    [11]

    Maas R, Parsons J, Engheta N, Polman A 2013 Nat. Photonics 7 907Google Scholar

    [12]

    Capretti A, Wang Y, Engheta N, Dal Negro L 2015 Opt. Lett. 40 1500Google Scholar

    [13]

    Capretti A, Wang Y, Engheta N, Dal Negro L 2015 Acs Photonics 2 1584

    [14]

    Caspani L, Kaipurath R, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Falco AD, Shalaev V 2016 Phys. Rev. Lett. 116 233901Google Scholar

    [15]

    Alam M Z, Leon I D, Boyd R W 2016 Science 352 795Google Scholar

    [16]

    Vassant S, Hugonin J P, Marquier F, Greffet J J 2012 Opt. Express 20 23971Google Scholar

    [17]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar

    [18]

    Hendrickson J R, Vangala S, Dass C K, Gibson R, Goldsmith J, Leedy K D, Walker D, Cleary J, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar

    [19]

    Luk T S, Ceglia D D, Liu S, Keeler G A, Prasankumar R P, Vincenti M A, Scalora M, Sinclair M B, Campione S 2015 Appl. Phys. Lett. 106 151103

    [20]

    Zhou Y, Alam M Z, Karimi M, Upham J, Boyd R W 2020 Nat. Commun. 11 2180

    [21]

    Vial A, Grimault A S, Macias D, Barchiesi D, Chapelle M L D L 2005 Phys. Rev. B 71 85416Google Scholar

    [22]

    Alam M Z, Schulz S A, Upham J, De Leon I, Boyd R W 2018 Nat. Photonics 12 79Google Scholar

    [23]

    Carpene E 2006 Phys. Rev. B 74 4301Google Scholar

    [24]

    Törmä1 P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [25]

    Runnerstrom E L, Kelley K P, Folland T, Nolen J R, Engheta N, Caldwell J D, Jon-Paul M 2019 Nano Lett. 19 948Google Scholar

    [26]

    Palik, Edward D 1985 Handbook of optical constants of solids (Academic Press) pp350, 749

    [27]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 72 036617Google Scholar

  • [1] 李远芳, 姜园, 赵磊. 基于改进强耦合振子的微弱脉冲信号检测方法. 物理学报, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [2] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [3] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控. 物理学报, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [4] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟. 物理学报, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [5] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [6] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [7] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [8] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用. 物理学报, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [9] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [10] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [11] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [12] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [13] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [14] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [15] 吉选芒, 姜其畅, 刘劲松. 光折变非相干耦合空间孤子族统一理论. 物理学报, 2012, 61(7): 074205. doi: 10.7498/aps.61.074205
    [16] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [17] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对. 物理学报, 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [18] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [19] 许 婕, 陈理想, 郑国梁, 王红成, 佘卫龙. 双折射晶体中旋光效应的耦合波理论. 物理学报, 2007, 56(8): 4615-4621. doi: 10.7498/aps.56.4615
    [20] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
计量
  • 文章访问数:  7504
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-04-30
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回