搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电体的光伏效应

蔡田怡 雎胜

引用本文:
Citation:

铁电体的光伏效应

蔡田怡, 雎胜

Photovoltaic effect in ferroelectrics

Cai Tian-Yi, Ju Sheng
PDF
导出引用
  • 介绍了铁电光伏效应的发展历史和现状,通过与传统半导体p-n结光伏器件比较,旨在阐述铁电光伏器件非比寻常的优点和重要的应用前景.铁电光伏效应分为体光伏效应和反常光伏效应,多种物理机制已被发现,无疑为铁电光伏效应的提高指明了方向.还对钙钛矿氧化物、卤化物和双钙钛矿结构氧化物等铁电体中的光伏效应进行了阐述,讨论了通过引入新的自由度实现多功能性光伏器件的可能性.
    Ferroelectric oxides are attractive materials for constructing efficient solar cells. The mechanism includes the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The BPE refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPE is different from the typical p-n junction-based photovoltaic mechanism in heterogeneous materials. We survey the history, development and recent progress in understanding the mechanisms of BPE, with a focus on the shift current mechanism, an intrinsic BPE that is universal to all materials lacking inversion symmetry. We also review the important factors to the APE, i.e., the domain boundary, the Schottcky junction, and the depolarization field. The recent successful applications of inorganic and hybrid perovskite structured materials in solar cells emphasize that ferroelectrics can be used in conventional photovoltaic architectures. We review the development in this field, with a particular emphasis on the perovskite materials and the theoretical explanations. In addition to discussing the implication of a ferroelectric absorber layer and the solid state theory of polarization, the design principles and prospect for high-efficiency ferroelectric photovoltaics are also mentioned. Considering the coupling between the degrees of freedom, some special ferroelectrics are expected to have prominent multi-functionality. With the introduction of the additional degree of freedom, some ferroelectrics, i.e., ScFexCr1-xO3 (1/6 x 5/6), can be a promising candidate for highly efficient solar cells and spin photovoltaic devices.
      Corresponding author: Cai Tian-Yi, caitianyi@suda.edu.cn;jusheng@suda.edu.cn ; Ju Sheng, caitianyi@suda.edu.cn;jusheng@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374220, 11204193), the National Basic Research Program of China (Grant No. 2014CB920900), the Qinlan Project of Jiangsu Province, and the Dongwu Scholar Project of Soochow University.
    [1]

    Green M A, Bremner S P 2017 Nat. Mater. 16 23

    [2]

    Chapin D M, Fuller C S, Pearson G L A 1954 J. Appl. Phys. 25 676

    [3]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [4]

    Lopez N, Reichertz L A, Yu K M 2011 Phys. Rev. Lett. 106 028701

    [5]

    Jackson E D 1958 Trans Conf. Use Solar Energy 5 122

    [6]

    Green M A, Keevers M J, Thomas I, Lasich J B, Emery K 2015 Prog. Photovolt. 23 685

    [7]

    Fridkin V M 1979 Photoferroelectrics (Berlin: Springer-Verlag)

    [8]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [9]

    Seidel J, Eng L M 2014 Curr. Appl. Phys. 14 1083

    [10]

    Bulter K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838

    [11]

    Hu Z, Tian M, Nysten B, Jonas A M 2009 Nat. Mater. 8 62

    [12]

    Scott J F 2007 Science 315 954

    [13]

    Garcia V, Bibes M 2012 Nature 483 279

    [14]

    Lee D, Yang S M, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [15]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [16]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [17]

    Ramesh R 2010 Nat. Mater. 9 380

    [18]

    Meyerheim H L, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko I V, Mertig I, Kirschner J 2011 Phys. Rev. Lett. 106 087203

    [19]

    Cai T Y, Ju S, Sun H, Li Z Y 2008 Prog. Phys. 1 50 (in Chinese) [蔡田怡, 雎胜, 孙华, 李振亚 2008 物理学进展 1 50]

    [20]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601

    [21]

    Cai T Y, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z Y, Shi J R, Wang E G 2009 Phys. Rev. B 80 140415

    [22]

    Cai T Y, Liu S C, Ju S, Liu C Y, Guo G Y 2017 Phys. Rev. Appl. 8 034034

    [23]

    Yuan Y, Xiao Z, Yang B, Huang J 2014 J. Mater. Chem. A 2 6027

    [24]

    Tan L Z, Zheng F, Young S M, Wang F, Liu S, Rappe A M 2016 npj Comput. Mater. 2 16026

    [25]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager Ⅲ J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143

    [26]

    Young S M, Rappe A M 2012 Phys. Rev. Lett. 109 116601

    [27]

    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [28]

    Alexe M, Hesse D 2011 Nat. Commun. 2 256

    [29]

    Bhatnagar A, Chaudhuri A R, Kim Y H, Hesse D, Alexe M 2013 Nat. Commun. 4 2835

    [30]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [31]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [32]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grtze M 2013 Nature 499 316

    [33]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K 2013 Nat. Photon. 7 486

    [34]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [35]

    Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C 2014 Chem. Commun. 50 15819

    [36]

    Bhachu D, Scanlon D, Saban E, Bronstein H, Parkin I, Carmalt C, Palgrave R 2015 J. Mater. Chem. A 3 9071

    [37]

    Zenkevich A, Matveyev Y, Maksimova K, Gaynutdinov R, Tolstikhina A, Fridkin V M 2014 Phys. Rev. B 90 161409

    [38]

    Sturman B S I, Fridkin V M 1992 Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Philadelphia: Gordon and Breach)

    [39]

    Fridkin V M, Popov B N 1978 Sov. Phys. Usp. 21 981V

    [40]

    Koch W T H, Munser R, Ruppel W, Wurfel P 1975 Solid State Commun. 17 847

    [41]

    Chynoweth A G 1956 Phys. Rev. 102 705

    [42]

    Belinicher V I, Sturman B I 1980 Phys.-Usp. 23 199

    [43]

    Lines M E, Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon Press)

    [44]

    Fridkin V M 2012 Applications of Ferroelectrics Held Jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), Aveiro, Portugal, July 9-13, 2012, pp1, 2

    [45]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [46]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999

    [47]

    Brivio F, Butler K T, Walsh A, van Schilfgaarde M 2014 Phys. Rev. B 89 155204

    [48]

    Auston D H, Glass A M, Ballman A A 1972 Phys. Rev. Lett. 28 897

    [49]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233

    [50]

    Somma C, Reimann K, Flytzanis C, Elsaesser T, Woerner M 2014 Phys. Rev. Lett. 112 146602

    [51]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [52]

    Bieler M, Pierz K, Siegner U, Dawson P 2007 Phys. Rev. B 76 161304

    [53]

    Ogden T R, Gookin D M 1984 Appl. Phys. Lett. 45 995

    [54]

    Nakamura M, Kagawa F, Tanigaki T, Park H S, Matsuda T, Shindo D, Tokura Y, Kawasaki M 2016 Phys. Rev. Lett. 116 156801

    [55]

    von Baltz R, Kraut W 1981 Phys. Rev. B 23 5590

    [56]

    Krl P 2000 J. Phys.: Condens. Matter 12 4851

    [57]

    Sipe J E, Shkrebtii A I 2000 Phys. Rev. B 61 5337

    [58]

    Nastos F, Sipe J E 2010 Phys. Rev. B 82 235204

    [59]

    Young S M, Zheng F, Rappe A M 2012 Phys. Rev. Lett. 109 236601

    [60]

    Young S M, Zheng F, Rappe A M 2013 Phys. Rev. Lett. 110 057201

    [61]

    Tan L Z, Rappe A M 2016 Phys. Rev. Lett. 116 237402

    [62]

    Wang F, Young S M, Zheng F 2016 Nat. Commun. 7 10419

    [63]

    Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28

    [64]

    Johnson H R, Williams R H, Mee C H B 1975 J. Phys. D: Appl. Phys. 8 1530

    [65]

    Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155

    [66]

    Uspenskii M D, Ivanova N G, Malkis I E 1968 Semiconductors 1 1059

    [67]

    Qin M, Yao K, Liang Y C 2009 J. Appl. Phys. 105 061624

    [68]

    Ichiki M, Furue H 2006 Proc. SPIE 6035 60350P

    [69]

    Xu J, Cao D W, Fang L, Shen M R 2009 J. Appl. Phys. 106 113705

    [70]

    Cao D W, Xu J, Fang L, Shen M R 2010 Appl. Phys. Lett. 96 192101

    [71]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 022912

    [72]

    Yang S Y, Martin L W, Byrens S J 2009 Appl. Phys. Lett. 95 062909

    [73]

    Zheng F G, Xu J, Fang L, Shen M R 2008 Appl. Phys. Lett. 93 172101

    [74]

    Chen B, Li M, Liu Y W 2011 Nanotechnology 22 195201

    [75]

    Cao D W, Zhang H, Fang L, Shen M R 2010 Appl. Phys. Lett. 97 102104

    [76]

    Yi H, Choi T, Choi S, Oh Y S, Cheong S W 2011 Adv. Mater. 23 3403

    [77]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [78]

    Kim D, Jo J, Kim Y 2005 Phys. Rev. Lett. 95 237602

    [79]

    Shvydaka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [80]

    Huang F, Liu X 2013 Appl. Phys. Lett. 102 103501

    [81]

    Zhang N, Yokota H, Glazer A, Ren Z, Keen D, Keeble D, Thomas P, Ye Z G 2014 Nat. Commun. 5 5231

    [82]

    Catlow C R A, Guo Z X, Miskufova M, Shevlin S A, Smith A G H, Sokol A A, Walsh A, Wilson D J, Woodley S M 2010 Philos. Trans. R. Soc. A 368 3379

    [83]

    Walsh A, Catlow C R A, Smith A G H, Sokol A A, Woodley S M 2011 Phys. Rev. B 83 220301

    [84]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photon. 9 61

    [85]

    Zheng F, Xin Y, Huang W, Zhang J, Wang X, Shen M R, Dong W, Fang L, Bai Y, Shen X, Hao J 2014 J. Mater. Chem. A 2 1363

    [86]

    Wang F, Grinberg I, Rappe A M 2014 Phys. Rev. B 89 235105

    [87]

    Wang F, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903

    [88]

    Ju S, Cai T Y, Guo G Y 2009 J. Chem. Phys. 130 214708

    [89]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990

    [90]

    Hu W J, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808

    [91]

    Yang M, Luo Z, Kim D J, Alexe M 2017 Appl. Phys. Lett. 110 183902

    [92]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242

    [93]

    Carnie M J, Charbonnaeu C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893

    [94]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [95]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [96]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L, Snaith H 2014 Energy Environ. Sci. 7 3061

    [97]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [98]

    Brivio F, Walker A B, Walsh A 2013 APL Mater. 1 042111

    [99]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584

    [100]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, de Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [101]

    Mitzi D B, Wang S, Field C A, Chess C A, Guloy A M 1995 Science 267 1473

    [102]

    Calabrese J, Jones N, Harlow R, Herron N, Thorn D, Wang Y 1991 J. Am. Chem. Soc. 113 2328

    [103]

    Borriello I, Cantele G, Ninno D 2008 Phys. Rev. B 77 235214

    [104]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [105]

    Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335

    [106]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [107]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201

    [108]

    Inaguma Y, Yoshida M, Katsumata T 2008 J. Am. Chem. Soc. 130 6704

    [109]

    Inaguma Y, Aimi A, Shirako Y, Sakurai D, Mori D, Kojitani H, Akaogi M, Nakayama M 2014 J. Am. Chem. Soc. 136 2748

    [110]

    Inaguma Y, Tanaka K, Tsuchiya T, Mori D, Katsumata T, Ohba T, Hiraki K, Takahashi T, Saitoh H 2011 J. Am. Chem. Soc. 133 16920

    [111]

    Li M R, Adem U, McMitchell S R, Xu Z, Thomas C I, Warren J E, Schiffmann F 2012 J. Am. Chem. Soc. 134 3737

    [112]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [113]

    Baettig P, Spaldin N A 2005 Appl. Phys. Lett. 86 012505

    [114]

    Ju S, Guo G Y 2008 Appl. Phys. Lett. 92 202504

    [115]

    Plov L, Chandra P, Rabe K M 2010 Phys. Rev. Lett. 104 037202

    [116]

    Diguez O, iguez J 2011 Phys. Rev. Lett. 107 057601

    [117]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [118]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004

    [119]

    He J, Franchini C, Rondinelli J M 2016 Chem. Mater. 28 25

    [120]

    Stroppa A, Sante D D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900

    [121]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 112506

    [122]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 231906

    [123]

    Ju S, Cai T Y, Wei C I, Guo G Y 2009 Opt. Lett. 34 3860

    [124]

    Ju S, Cai T Y 2008 Appl. Phys. Lett. 93 251904

    [125]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 94 191908

    [126]

    Ju S, Guo G Y 2008 J. Chem. Phys. 129 194704

  • [1]

    Green M A, Bremner S P 2017 Nat. Mater. 16 23

    [2]

    Chapin D M, Fuller C S, Pearson G L A 1954 J. Appl. Phys. 25 676

    [3]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [4]

    Lopez N, Reichertz L A, Yu K M 2011 Phys. Rev. Lett. 106 028701

    [5]

    Jackson E D 1958 Trans Conf. Use Solar Energy 5 122

    [6]

    Green M A, Keevers M J, Thomas I, Lasich J B, Emery K 2015 Prog. Photovolt. 23 685

    [7]

    Fridkin V M 1979 Photoferroelectrics (Berlin: Springer-Verlag)

    [8]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651

    [9]

    Seidel J, Eng L M 2014 Curr. Appl. Phys. 14 1083

    [10]

    Bulter K T, Frost J M, Walsh A 2015 Energy Environ. Sci. 8 838

    [11]

    Hu Z, Tian M, Nysten B, Jonas A M 2009 Nat. Mater. 8 62

    [12]

    Scott J F 2007 Science 315 954

    [13]

    Garcia V, Bibes M 2012 Nature 483 279

    [14]

    Lee D, Yang S M, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [15]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [16]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [17]

    Ramesh R 2010 Nat. Mater. 9 380

    [18]

    Meyerheim H L, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko I V, Mertig I, Kirschner J 2011 Phys. Rev. Lett. 106 087203

    [19]

    Cai T Y, Ju S, Sun H, Li Z Y 2008 Prog. Phys. 1 50 (in Chinese) [蔡田怡, 雎胜, 孙华, 李振亚 2008 物理学进展 1 50]

    [20]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601

    [21]

    Cai T Y, Ju S, Lee J, Sai N, Demkov A A, Niu Q, Li Z Y, Shi J R, Wang E G 2009 Phys. Rev. B 80 140415

    [22]

    Cai T Y, Liu S C, Ju S, Liu C Y, Guo G Y 2017 Phys. Rev. Appl. 8 034034

    [23]

    Yuan Y, Xiao Z, Yang B, Huang J 2014 J. Mater. Chem. A 2 6027

    [24]

    Tan L Z, Zheng F, Young S M, Wang F, Liu S, Rappe A M 2016 npj Comput. Mater. 2 16026

    [25]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager Ⅲ J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143

    [26]

    Young S M, Rappe A M 2012 Phys. Rev. Lett. 109 116601

    [27]

    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [28]

    Alexe M, Hesse D 2011 Nat. Commun. 2 256

    [29]

    Bhatnagar A, Chaudhuri A R, Kim Y H, Hesse D, Alexe M 2013 Nat. Commun. 4 2835

    [30]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [31]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [32]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grtze M 2013 Nature 499 316

    [33]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K 2013 Nat. Photon. 7 486

    [34]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [35]

    Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C 2014 Chem. Commun. 50 15819

    [36]

    Bhachu D, Scanlon D, Saban E, Bronstein H, Parkin I, Carmalt C, Palgrave R 2015 J. Mater. Chem. A 3 9071

    [37]

    Zenkevich A, Matveyev Y, Maksimova K, Gaynutdinov R, Tolstikhina A, Fridkin V M 2014 Phys. Rev. B 90 161409

    [38]

    Sturman B S I, Fridkin V M 1992 Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Philadelphia: Gordon and Breach)

    [39]

    Fridkin V M, Popov B N 1978 Sov. Phys. Usp. 21 981V

    [40]

    Koch W T H, Munser R, Ruppel W, Wurfel P 1975 Solid State Commun. 17 847

    [41]

    Chynoweth A G 1956 Phys. Rev. 102 705

    [42]

    Belinicher V I, Sturman B I 1980 Phys.-Usp. 23 199

    [43]

    Lines M E, Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon Press)

    [44]

    Fridkin V M 2012 Applications of Ferroelectrics Held Jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), Aveiro, Portugal, July 9-13, 2012, pp1, 2

    [45]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [46]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999

    [47]

    Brivio F, Butler K T, Walsh A, van Schilfgaarde M 2014 Phys. Rev. B 89 155204

    [48]

    Auston D H, Glass A M, Ballman A A 1972 Phys. Rev. Lett. 28 897

    [49]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233

    [50]

    Somma C, Reimann K, Flytzanis C, Elsaesser T, Woerner M 2014 Phys. Rev. Lett. 112 146602

    [51]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [52]

    Bieler M, Pierz K, Siegner U, Dawson P 2007 Phys. Rev. B 76 161304

    [53]

    Ogden T R, Gookin D M 1984 Appl. Phys. Lett. 45 995

    [54]

    Nakamura M, Kagawa F, Tanigaki T, Park H S, Matsuda T, Shindo D, Tokura Y, Kawasaki M 2016 Phys. Rev. Lett. 116 156801

    [55]

    von Baltz R, Kraut W 1981 Phys. Rev. B 23 5590

    [56]

    Krl P 2000 J. Phys.: Condens. Matter 12 4851

    [57]

    Sipe J E, Shkrebtii A I 2000 Phys. Rev. B 61 5337

    [58]

    Nastos F, Sipe J E 2010 Phys. Rev. B 82 235204

    [59]

    Young S M, Zheng F, Rappe A M 2012 Phys. Rev. Lett. 109 236601

    [60]

    Young S M, Zheng F, Rappe A M 2013 Phys. Rev. Lett. 110 057201

    [61]

    Tan L Z, Rappe A M 2016 Phys. Rev. Lett. 116 237402

    [62]

    Wang F, Young S M, Zheng F 2016 Nat. Commun. 7 10419

    [63]

    Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28

    [64]

    Johnson H R, Williams R H, Mee C H B 1975 J. Phys. D: Appl. Phys. 8 1530

    [65]

    Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155

    [66]

    Uspenskii M D, Ivanova N G, Malkis I E 1968 Semiconductors 1 1059

    [67]

    Qin M, Yao K, Liang Y C 2009 J. Appl. Phys. 105 061624

    [68]

    Ichiki M, Furue H 2006 Proc. SPIE 6035 60350P

    [69]

    Xu J, Cao D W, Fang L, Shen M R 2009 J. Appl. Phys. 106 113705

    [70]

    Cao D W, Xu J, Fang L, Shen M R 2010 Appl. Phys. Lett. 96 192101

    [71]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 022912

    [72]

    Yang S Y, Martin L W, Byrens S J 2009 Appl. Phys. Lett. 95 062909

    [73]

    Zheng F G, Xu J, Fang L, Shen M R 2008 Appl. Phys. Lett. 93 172101

    [74]

    Chen B, Li M, Liu Y W 2011 Nanotechnology 22 195201

    [75]

    Cao D W, Zhang H, Fang L, Shen M R 2010 Appl. Phys. Lett. 97 102104

    [76]

    Yi H, Choi T, Choi S, Oh Y S, Cheong S W 2011 Adv. Mater. 23 3403

    [77]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [78]

    Kim D, Jo J, Kim Y 2005 Phys. Rev. Lett. 95 237602

    [79]

    Shvydaka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [80]

    Huang F, Liu X 2013 Appl. Phys. Lett. 102 103501

    [81]

    Zhang N, Yokota H, Glazer A, Ren Z, Keen D, Keeble D, Thomas P, Ye Z G 2014 Nat. Commun. 5 5231

    [82]

    Catlow C R A, Guo Z X, Miskufova M, Shevlin S A, Smith A G H, Sokol A A, Walsh A, Wilson D J, Woodley S M 2010 Philos. Trans. R. Soc. A 368 3379

    [83]

    Walsh A, Catlow C R A, Smith A G H, Sokol A A, Woodley S M 2011 Phys. Rev. B 83 220301

    [84]

    Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photon. 9 61

    [85]

    Zheng F, Xin Y, Huang W, Zhang J, Wang X, Shen M R, Dong W, Fang L, Bai Y, Shen X, Hao J 2014 J. Mater. Chem. A 2 1363

    [86]

    Wang F, Grinberg I, Rappe A M 2014 Phys. Rev. B 89 235105

    [87]

    Wang F, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903

    [88]

    Ju S, Cai T Y, Guo G Y 2009 J. Chem. Phys. 130 214708

    [89]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J 2013 Nat. Commun. 4 1990

    [90]

    Hu W J, Wang Z, Yu W, Wu T 2016 Nat. Commun. 7 10808

    [91]

    Yang M, Luo Z, Kim D J, Alexe M 2017 Appl. Phys. Lett. 110 183902

    [92]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242

    [93]

    Carnie M J, Charbonnaeu C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893

    [94]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [95]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [96]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L, Snaith H 2014 Energy Environ. Sci. 7 3061

    [97]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [98]

    Brivio F, Walker A B, Walsh A 2013 APL Mater. 1 042111

    [99]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584

    [100]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, de Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [101]

    Mitzi D B, Wang S, Field C A, Chess C A, Guloy A M 1995 Science 267 1473

    [102]

    Calabrese J, Jones N, Harlow R, Herron N, Thorn D, Wang Y 1991 J. Am. Chem. Soc. 113 2328

    [103]

    Borriello I, Cantele G, Ninno D 2008 Phys. Rev. B 77 235214

    [104]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [105]

    Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335

    [106]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [107]

    Huang X, Paudel T R, Dong S, Tsymbal E Y 2015 Phys. Rev. B 92 125201

    [108]

    Inaguma Y, Yoshida M, Katsumata T 2008 J. Am. Chem. Soc. 130 6704

    [109]

    Inaguma Y, Aimi A, Shirako Y, Sakurai D, Mori D, Kojitani H, Akaogi M, Nakayama M 2014 J. Am. Chem. Soc. 136 2748

    [110]

    Inaguma Y, Tanaka K, Tsuchiya T, Mori D, Katsumata T, Ohba T, Hiraki K, Takahashi T, Saitoh H 2011 J. Am. Chem. Soc. 133 16920

    [111]

    Li M R, Adem U, McMitchell S R, Xu Z, Thomas C I, Warren J E, Schiffmann F 2012 J. Am. Chem. Soc. 134 3737

    [112]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [113]

    Baettig P, Spaldin N A 2005 Appl. Phys. Lett. 86 012505

    [114]

    Ju S, Guo G Y 2008 Appl. Phys. Lett. 92 202504

    [115]

    Plov L, Chandra P, Rabe K M 2010 Phys. Rev. Lett. 104 037202

    [116]

    Diguez O, iguez J 2011 Phys. Rev. Lett. 107 057601

    [117]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [118]

    Young S M, Zheng F, Rappe A M 2015 Phys. Rev. Appl. 4 054004

    [119]

    He J, Franchini C, Rondinelli J M 2016 Chem. Mater. 28 25

    [120]

    Stroppa A, Sante D D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900

    [121]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 112506

    [122]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 95 231906

    [123]

    Ju S, Cai T Y, Wei C I, Guo G Y 2009 Opt. Lett. 34 3860

    [124]

    Ju S, Cai T Y 2008 Appl. Phys. Lett. 93 251904

    [125]

    Ju S, Cai T Y 2009 Appl. Phys. Lett. 94 191908

    [126]

    Ju S, Guo G Y 2008 J. Chem. Phys. 129 194704

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [3] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响. 物理学报, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [6] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [7] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [8] 帅佳丽, 刘向鑫, 杨彪. 铁电半导体耦合薄膜电池中的反常载流子传输现象. 物理学报, 2016, 65(11): 118101. doi: 10.7498/aps.65.118101
    [9] 范巍, 曾雉. 四元硫化物Cu2Zn(Ti, Zr, Hf)S4:一类新颖光伏材料. 物理学报, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [10] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [11] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] 范巍, 曾雉. Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究. 物理学报, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [13] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [14] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [15] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响. 物理学报, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [16] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 物理学报, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [17] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [18] 王渊旭, 王春雷, 袁 敏, 赵明磊, 钟维烈. 光折变晶体KTa0.5Nb0.5O3光学特性的第一性原理研究. 物理学报, 2004, 53(9): 3141-3145. doi: 10.7498/aps.53.3141
    [19] 何国岗, 王晓生, 佘卫龙. 全光准稳态空间孤子对波长的依赖性. 物理学报, 2002, 51(10): 2270-2275. doi: 10.7498/aps.51.2270
    [20] 王渊旭, 钟维烈, 王春雷, 张沛霖. 四方铁电体PbFe0.5Nb0.5O3精细结构的第一性原理研究. 物理学报, 2002, 51(1): 171-173. doi: 10.7498/aps.51.171
计量
  • 文章访问数:  21964
  • PDF下载量:  1715
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-18
  • 修回日期:  2018-06-13
  • 刊出日期:  2018-08-05

/

返回文章
返回