搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四元硫化物Cu2Zn(Ti, Zr, Hf)S4:一类新颖光伏材料

范巍 曾雉

引用本文:
Citation:

四元硫化物Cu2Zn(Ti, Zr, Hf)S4:一类新颖光伏材料

范巍, 曾雉

Quaternary sulphides Cu2Zn(Ti, Zr, Hf)S4, the new type of photovoltaic materials

Fan Wei, Zeng Zhi
PDF
导出引用
  • 采用第一性原理电子结构方法研究了四价过渡金属Ti, Zr和Hf替代Cu2ZnSnS4(CZTS)中Sn原子以及Se替代S原子所得到的四元硫族化合物的电子结构、光学性质和晶体结构的稳定性. 实验上用Se替代CZTS中部分S得到的Cu2ZnSnS4-xSex(CZTSSe)作为光吸收材料, 可以进一步提高光伏效率. 我们计算表明用Se替代S后, CZTSe的价带顶明显下移, 并接近Cu(In, Ga) Se2 (CIGS)价带顶位置. 与CZTSe的电子结构特征一样, Cu2Zn(Ti, Zr, Hf)S4四元硫化物的价带顶与母体材料CZTS相比也向低能移动, 并接近CIGS价带顶位置. 由于高光伏效率要求窗口材料ZnO、缓冲层材料和光吸收材料的价带顶和带隙满足一定的渐进的变化关系, 因此可以预见用Cu2Zn(Ti, Zr, Hf)S4作光吸收材料可以有效地提高甚至接近CIGS的光伏效率. 通过计算弹性常数和声子谱, 以及有限温度下第一性原理分子动力学模拟, 发现Cu2Zn(Ti, Zr, Hf)S4的结构稳定性与CZTS相近. 进一步计算Cu2Zn(Ti, Zr, Hf)S4与不同缓冲层间和窗口材料与缓冲层间的反射系数, 并讨论了ZnSe, In2S3, ZnS作为缓冲层材料和TiO2作为窗口材料对光伏效率可能的影响.
    Based on the first-principles electronic-structure method, we study the electronic structures, optical properties, and the structural stabilities of the quaternary sulphides Cu2Zn(Ti, Zr, Hf) S4, which are obtained via substituting Ti, Zr, and Hf elements for Sn elements in Cu2ZnSnS4 (CTZS). It is well known that the photovoltaic efficiency of CZTS(Se) will be improved if the Se atoms partially substitute S atoms in CZTS. Our results show that the valence-band top of CZTSe shifts to lower energy and accesses to the valence-band top of Cu(InGa) Se2 (CIGS). Similar to CZTSe, the valenceband tops of Cu2Zn(Ti, Zr, Hf) S4 also shift to lower energies and access to the top of valence-band of CIGS. The high photovoltaic efficiency requires the smooth changes of the valence-band top and energy gap from the window material and the buffer layer to the light-absorption layer. Thus we predict that the photovoltaic efficiency will be improved if Sn atoms are substituted, even partially, by Ti, Zr, Hf atoms in CZTS, just like Se atoms substituting S atoms in CZTS. To obtain some reliable results, we perform the calculations both of PBE functional and HSE06 functional. The changes of valence-band tops from window materials to the light-absorbed materials are similar for PBE functional and HSE06 functional. The absolute values of the valence-band tops with HSE06 are lower in energies compared with PBE functional and the gaps obtained from HSE06 are larger than the gaps from PBE. We also calculate the optical properties of different light-absorbed materials including CZTiS, CZZrS, CZHfS, CZTS and CIGS, in which we mainly focus on the reflectance of different layers from the vacuum to the light-absorbed materials, from the window layers to the buffer layers and from the buffer layers to the light-absorbed layers. For the window layers we consider the ZnO and TiO2, and for the buffer layer we consider the CdS, In2S3, ZnSe and ZnS, etc. respectively. The high-performance solar cell requires low reflectance between the window layer and the buffer layer, the buffer layer and the light-absorbed layer so as to ensure more light transmit to the light-absorbed layer. Our results of reflectance show that ZnO(TiO2)/In2S3(ZnSe)/PVM are possible multilayer structures, with PVM (photovoltaic materials) =CZTS, CIGS, CZTiS, CZZrS, CZHfS. If we replace CdS buffer layer with other n-type semiconductors, the material of the window layer must be replaced accordingly with new materials to reach the lower reflectance. The structural stability of photovoltaics is an important topic in the application of photovoltaics. Our results show that CZTiS, CZZrS and CZHfS are structure-stable at zero temperature in terms of the calculated elastic properties and phonon vibration spectrum. Based on the elastic constants and Poisson-ratio, similar to CdTe, CIGS and CZTS, the CZTiS, CZZrS and CZHfS are ductile materials suitable to be used as the flexible solar cell. Additionally, we have performed the molecular-dynamics simulations at some finite temperatures (100, 800 and 1200 K respectively), calculated the pair-distribution functions and angle-distribution functions. As comparison, we also perform the corresponding molecular dynamics simulations of CZTS and ZnS. Our results show that the structural stabilities of CZTiS, CZZrS, and CZHfS are close to those of CZTS and ZnS. This means that once CZTiS, CZZrS and CZHfS are obtained experimentally, they will be stable. In summary, the novel photovoltaic materials CZTiS, CZZrS and CZHfS studied in detail in this work are potentially the high-performance photovoltaic materials for the solar cell application in the near future.
      通信作者: 范巍, fan@theory.issp.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB933702)资助的课题.
      Corresponding author: Fan Wei, fan@theory.issp.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB933702).
    [1]

    Ito K, Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094

    [2]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res.Appl. 21 72

    [3]

    Guo Q J, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [4]

    Guo L, Zhu Y, Gunawan O, Gokmen T, Deline V R, Ahmed S, Romankiw L T, Deligianni H 2014 Prog. Photovolt: Res. Appl. 22 58

    [5]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [6]

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [7]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [8]

    Yuan Z K, Xu P, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) [袁振坤, 许鹏, 陈时友 2015 物理学报 64 186102]

    [9]

    Shu Q, Yang J H, Chen S Y, Huang B, Xiang X J, Gong X G, Wei S H 2013 Phys. Rev. B 87 115208

    [10]

    Zhao H Y, Kumar M, Persson C 2012 Phys. Status Solidi C 9 1600

    [11]

    Persson C, Zunger A 2003 Phys. Rev. Lett. 91 266401

    [12]

    Persson C, Zunger A 2005 Appl. Phys. Lett. 87 211904

    [13]

    Schmidt S S, Abou-Ras D, Sadewasser S, Yin W J, Feng C B, Yan Y F 2012 Phys. Rev. Lett. 109 095506

    [14]

    Yan Y F, Jiang C S, Noufi R, Wei S H, Moutinho H R, Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504

    [15]

    Li J W, Mitzi D B, Shenoy V B 2011 ACS Nano 5 8613

    [16]

    Medvedeva N I, Shalaeva E V, Kuznetsov M V, Yakushev M V 2006 Phys. Rev. B 73 035207

    [17]

    Xu P, Chen S Y, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [18]

    Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P, Liu L 2014 J. Phys. D: Appl. Phys. 47 075304

    [19]

    Bao W, Ichimura M 2012 Int. J. Photoenergy ArticleID 619812

    [20]

    Fan W, Zeng Z 2015 Acta Phys. Sin. 64 238801 (in Chinese) [范巍, 曾雉 2015 物理学报 64 238801]

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [25]

    Gajdo M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

    [26]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [27]

    Romero M J, Du H, Teeter G, Yan Y F, Al-Jassim M M 2011 Phys. Rev. B 84 165324

    [28]

    Grossberg M, Raadik T, Raudoja J, Krustok J 2014 Current Appl. Phys. 14 447

    [29]

    Chen S Y, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204

    [30]

    Yang C Y, Qin M S, Wang Y M, Wan D Y, Huang F Q, Lin J H 2013 Sci. Rep. 3 1286

    [31]

    Henkelman G, Arnaldsson A, Jnsson H 2006 Comput. Mater. Sci. 36 354

    [32]

    Wang W, Shen H L, Jin J L, Li J Z, Ma Y 2015 Chin. Phys. B 24 056805

    [33]

    Gordillo G, Caldern C, Bartolo-Prez P 2014 Appl. Surf. Sci. 305 506

    [34]

    Chalapathi U, Uthanna S, Sundara R V 2015 Solar Energy Materials Solar Cells 132 476

    [35]

    Levcenko S, Gurieva G, Guc M, Nateprov A 2009 Moldav. J. Phys. Sci. 8 173

    [36]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [37]

    Strohm A, Eisenmann L, Gebhardt R K, Harding A, Schltzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162

    [38]

    Camps I, Coutinho J, Mir M, da Cunha A F, Rayson M J, Briddon P R 2012 Semicond. Sci. Technol. 27 115001

    [39]

    Berlincourt D, Jaffe H, Shiozawa L R 1963 Phys. Rev. 129 1009

    [40]

    Krieger M, Sigg H, Herres N, Bachem K, Kohler K 1995 Appl. Phys. Lett. 66 682

    [41]

    Wortman J J, Evans R A 1965 J. Appl. Phys. 36 153

    [42]

    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003

    [43]

    Schorr S, Gonzalez-Aviles G 2009 Phys. Status Solidi A 206 1054

    [44]

    Madelung O 2004 Semiconductors: Data Handbook (Berlin: Springer-Verlag) p205

    [45]

    https://en.wikipedia.org/wiki/Zinc_sulfide

    [46]

    Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [47]

    DiSalvo F J, Waszczak J V 1982 Phys. Rev. B 26 2501

    [48]

    Klepp K O, Gurtner D 1996 Journal of Alloys and Compounds 243 19

    [49]

    Liu Y C, Yang Z, Cui D, Ren X D, Sun J K, Liu X J, Zhang J R, Wei Q B, Fan H B, Yu F Y, Zhang X, Zhao C M, Liu S Z 2015 Adv. Mater. 27 5176

    [50]

    Saidaminov M I, Adinolfi V, Comin R, Abdelhady A L, Peng W, Dursun I, Yuan M J, Hoogland S, Sargent E H, Bakr Q M 2015 Nat. Commn. 6 8724

    [51]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1]

    Ito K, Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094

    [2]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res.Appl. 21 72

    [3]

    Guo Q J, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [4]

    Guo L, Zhu Y, Gunawan O, Gokmen T, Deline V R, Ahmed S, Romankiw L T, Deligianni H 2014 Prog. Photovolt: Res. Appl. 22 58

    [5]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [6]

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [7]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [8]

    Yuan Z K, Xu P, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) [袁振坤, 许鹏, 陈时友 2015 物理学报 64 186102]

    [9]

    Shu Q, Yang J H, Chen S Y, Huang B, Xiang X J, Gong X G, Wei S H 2013 Phys. Rev. B 87 115208

    [10]

    Zhao H Y, Kumar M, Persson C 2012 Phys. Status Solidi C 9 1600

    [11]

    Persson C, Zunger A 2003 Phys. Rev. Lett. 91 266401

    [12]

    Persson C, Zunger A 2005 Appl. Phys. Lett. 87 211904

    [13]

    Schmidt S S, Abou-Ras D, Sadewasser S, Yin W J, Feng C B, Yan Y F 2012 Phys. Rev. Lett. 109 095506

    [14]

    Yan Y F, Jiang C S, Noufi R, Wei S H, Moutinho H R, Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504

    [15]

    Li J W, Mitzi D B, Shenoy V B 2011 ACS Nano 5 8613

    [16]

    Medvedeva N I, Shalaeva E V, Kuznetsov M V, Yakushev M V 2006 Phys. Rev. B 73 035207

    [17]

    Xu P, Chen S Y, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [18]

    Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P, Liu L 2014 J. Phys. D: Appl. Phys. 47 075304

    [19]

    Bao W, Ichimura M 2012 Int. J. Photoenergy ArticleID 619812

    [20]

    Fan W, Zeng Z 2015 Acta Phys. Sin. 64 238801 (in Chinese) [范巍, 曾雉 2015 物理学报 64 238801]

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [25]

    Gajdo M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

    [26]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [27]

    Romero M J, Du H, Teeter G, Yan Y F, Al-Jassim M M 2011 Phys. Rev. B 84 165324

    [28]

    Grossberg M, Raadik T, Raudoja J, Krustok J 2014 Current Appl. Phys. 14 447

    [29]

    Chen S Y, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204

    [30]

    Yang C Y, Qin M S, Wang Y M, Wan D Y, Huang F Q, Lin J H 2013 Sci. Rep. 3 1286

    [31]

    Henkelman G, Arnaldsson A, Jnsson H 2006 Comput. Mater. Sci. 36 354

    [32]

    Wang W, Shen H L, Jin J L, Li J Z, Ma Y 2015 Chin. Phys. B 24 056805

    [33]

    Gordillo G, Caldern C, Bartolo-Prez P 2014 Appl. Surf. Sci. 305 506

    [34]

    Chalapathi U, Uthanna S, Sundara R V 2015 Solar Energy Materials Solar Cells 132 476

    [35]

    Levcenko S, Gurieva G, Guc M, Nateprov A 2009 Moldav. J. Phys. Sci. 8 173

    [36]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [37]

    Strohm A, Eisenmann L, Gebhardt R K, Harding A, Schltzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162

    [38]

    Camps I, Coutinho J, Mir M, da Cunha A F, Rayson M J, Briddon P R 2012 Semicond. Sci. Technol. 27 115001

    [39]

    Berlincourt D, Jaffe H, Shiozawa L R 1963 Phys. Rev. 129 1009

    [40]

    Krieger M, Sigg H, Herres N, Bachem K, Kohler K 1995 Appl. Phys. Lett. 66 682

    [41]

    Wortman J J, Evans R A 1965 J. Appl. Phys. 36 153

    [42]

    Matsushita H, Ichikawa T, Katsui A 2005 J. Mater. Sci. 40 2003

    [43]

    Schorr S, Gonzalez-Aviles G 2009 Phys. Status Solidi A 206 1054

    [44]

    Madelung O 2004 Semiconductors: Data Handbook (Berlin: Springer-Verlag) p205

    [45]

    https://en.wikipedia.org/wiki/Zinc_sulfide

    [46]

    Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [47]

    DiSalvo F J, Waszczak J V 1982 Phys. Rev. B 26 2501

    [48]

    Klepp K O, Gurtner D 1996 Journal of Alloys and Compounds 243 19

    [49]

    Liu Y C, Yang Z, Cui D, Ren X D, Sun J K, Liu X J, Zhang J R, Wei Q B, Fan H B, Yu F Y, Zhang X, Zhao C M, Liu S Z 2015 Adv. Mater. 27 5176

    [50]

    Saidaminov M I, Adinolfi V, Comin R, Abdelhady A L, Peng W, Dursun I, Yuan M J, Hoogland S, Sargent E H, Bakr Q M 2015 Nat. Commn. 6 8724

    [51]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [4] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [5] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [6] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [7] 蔡田怡, 雎胜. 铁电体的光伏效应. 物理学报, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [8] 李津, 王海燕, 李优, 张秋月, 贾瑜. 氧族元素对D-A和D--A共聚物光吸收谱红移的第一性原理研究. 物理学报, 2016, 65(10): 103101. doi: 10.7498/aps.65.103101
    [9] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [10] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [11] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] 范巍, 曾雉. Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究. 物理学报, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [13] 毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东. 溅射后硒化法制备的CIGS薄膜中Ga元素扩散研究. 物理学报, 2014, 63(11): 118802. doi: 10.7498/aps.63.118802
    [14] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [15] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计. 物理学报, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [17] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [18] 陈晓波, 杨国建, 李崧, Sawanobori N., 徐怡庄, 陈晓端, 周固. 掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的研究. 物理学报, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [19] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 物理学报, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  5474
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-08
  • 修回日期:  2016-01-03
  • 刊出日期:  2016-03-05

/

返回文章
返回