搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧族元素对D-A和D--A共聚物光吸收谱红移的第一性原理研究

李津 王海燕 李优 张秋月 贾瑜

引用本文:
Citation:

氧族元素对D-A和D--A共聚物光吸收谱红移的第一性原理研究

李津, 王海燕, 李优, 张秋月, 贾瑜

First-principle study of the optical absorption spectra of chalcogen on D-A and D--A copolymers

Li Jin, Wang Hai-Yan, Li You, Zhang Qiu-Yue, Jia Yu
PDF
导出引用
  • D-A型共聚物作为有机聚合物太阳能电池的电子给体材料近年来引起广泛关注. 本文以苯并二噻吩(BDT)为电子给体单元, 苯并噻二唑(BT)为电子受体单元来模拟D-A共聚体; 并用噻吩环作为桥, 构造出D--A(PBDT-DTBX, X = O, S, Se, Te)结构. 采用第一性原理的密度泛函理论, 系统地计算相应的电子结构和光吸收谱. 比较不同氧族元素和噻吩-键桥对聚合物光吸收谱的影响. 研究结果表明: D-A共聚体中当X位元素以O, S, Se, Te 替换时, 其体系的最高占有分子轨道(HOMO)能级变化不大, 最低未占有分子轨道(LUMO)能级逐渐靠近费米能级, 带隙逐渐减小. 在可见光区有两个较强的吸收峰, 随着X位元素原子序数增大, 位于4.0 eV左右的光吸收峰位基本不变, 另一光吸收峰强度明显增大并发生红移. 与D-A结构相比, D--A结构的带隙均有所减小, 其中X为Te时带隙最小; 光吸收峰强度随着氧族元素原子序数的增大也明显增大并发生红移. 通过比较光吸收系数和相应态密度, 结果表明, 4.0 eV 左右的光吸收峰主要是BDT单元的贡献, 氧族元素的改变主要影响519.4-703.9 nm范围的光吸收.
    D-A type copolymer as an organic polymer solar cell electronic material in recent years has attracted wide attention. In order to improve the efficiency of energy conversion, many active layer materials, especially the donor materials, have been designed and synthesized. By inducing the different donor and acceptor units, the absorption spectrum can better match with the solar spectrum and the carrier mobility can increase. In this paper, by using the density functional theory method, we investigate the electronic structures and optical absorption spectra of D-A and D--A copolymers. Benzodithiophene (BDT) as the electron donor unit, and dibenzothiophene (BT) as the electron acceptor unit are used to simulate D-A (PBDT-BX, X = O, S, Se, Te) copolymer systems; and D--A (PBDT-DTBX, X = O, S, Se, Te) structures are constructed with thiophene ring as a bridge between D and A. Firstly, our calculation results indicate that when X is replaced separately by elements O, S, Se and Te in D-A copolymers, the LUMO levels move close to the Fermi level, while the changes of the HOMO energy levels are relatively small, resulting in the band gap decreasing gradually. Then, the analysis of the density of states (DOS) shows that the contribution of LUMO comes from the BT unit and HOMO from the BDT unit. Also the difference in charge density shows that the thiophene ring enhances the charge transfer between BT and BDT. Besides, the studies of the optical absorption spectrum reveal that there appear two strong absorption peaks with the increase of atomic number of X, of which one is at about 4.0 eV and has no obvious change, and the other increases intensively and is red-shifted. Moreover, compared with the D-A structure, the D--A structure has the band gap that will decrease obviously and has a lowest value when X is Te. The optical absorption peak also increases significantly as the atomic number of oxygen group elements increases and peak position is red-shifted. The range of optical absorption peak is mainly from 703.9 to 519.4 nm. According to the absorption spectrum and DOS the optical absorption peak at about 4.0 eV is mainly contributed by the BDT unit. Overall, our findings provide a good understanding of mechanism about the red-shift of optical absorption spectra of copolymers and can serve as guidance for organic polymer design in photovoltaic cell experimentally.
      通信作者: 王海燕, why81@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61440030)和高等学校博士学科点专项科研基金(批准号:20114101110001)的资助的课题.
      Corresponding author: Wang Hai-Yan, why81@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61440030) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114101110001).
    [1]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [2]

    Ahmadi M, Dafeh S R, Fatehy H 2016 Chin. Phys. B 25 047201

    [3]

    Xu Z H, Chen W B, Ye W Q, Yang W F 2014 Acta Phys. Sin. 63 218801 (in Chinese) [许中华, 陈卫兵, 叶伟琼, 杨伟丰 2014 物理学报 63 218801]

    [4]

    Wang T H, Chen C B, Guo K P, Chen G, Xu T, Wei B 2016 Chin. Phys. B 25 038402

    [5]

    Jin S Q, Xu Z, Zhao S L, Zhao J, Li Y, Deng L J 2016 Acta Phys. Sin. 65 028801 (in Chinese) [金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟 2016 物理学报 65 028801]

    [6]

    He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y 2011 Adv. Mater. 23 4636

    [7]

    Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [8]

    Hou J H, Park M H, Zhang S Q, Yao Y, Chen L M, Li J, Yang Y 2008 Macromolecules 41 6012

    [9]

    Li Y W, Chen Y J, Liu X, Wang Z, Yang X M, Tu Y F, Zhu X L 2011 Macromolecules 44 6370

    [10]

    Wang X C, Sun Y P, Chen S, Guo X, Zhang M J, Li X Y, Li Y F, Wang H Q 2012 Macromolecules 45 1208

    [11]

    Wang X C, Jiang P, Chen Y, Luo H, Zhang Z G, Wang H Q, Li X Y, Yu G, Li Y F 2013 Macromolecules 46 4805

    [12]

    Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J 2012 Macromolecules 45 6415

    [13]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 190 591

    [14]

    Pan H, Li Y, Wu Y, Liu P, Ong B S, Zhu S, Xu G 2007 J. Am. Chem. Soc. 129 4112

    [15]

    You J B, Dou L T, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [16]

    Kim J H, Shin S A, Park J B, Song C E, Shin W S, Yang H, Li Y F, Hwang D H 2014 Macromolecules 47 1613

    [17]

    Huang Y H, Zhang M, Chen H J, Wu F, Cao Z C, Zhang L J, Tan S T J 2014 J. Mater. Chem. A 2 5218

    [18]

    He P, Li Z F, Hou Q F, Wang Y L 2013 Chinese J. Org. Chem. 33 288

    [19]

    Stuart A C, Tumbleston J R, Zhou H X, Li W T, Liu S B, Ade H, You W 2013 J. Am. Chem. Soc. 135 1806

    [20]

    Zhou E J, Cong J Z, Hashimoto K, Tajima K 2013 Macromolecules 46 763

    [21]

    Kularatne R S, Sista P, Nguyen H Q, Bhatt M P, Biewer M C, Stefan M C 2012 Macromolecules 45 7855

    [22]

    Gedefaw D, Tessarolo M, Zhuang W L, Kroon R, Wang E G, Bolognesi M, Seri M, Muccinib M, Andersson M R 2014 Polym. Chem-UK. 5 2083

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Blchl P E 1994 Phys. Rev. B: Condens. Matter 50 17953

    [25]

    Yi D, Wu Z, Yang L, Dai Y, Xie S J 2015 Acta Phys. Sin. 64 187305 (in Chinese) [伊丁, 武镇, 杨柳, 戴瑛, 解士杰 2015 物理学报 64 187305]

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Rieger R, Beckmann D, Mavrinskiy A, Kastler M, Mllen K 2010 Chem. Mater. 22 5314

    [28]

    Tang S, Zhang J 2011 J. Phys. Chem. A 115 5184

    [29]

    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Duricher G, Tao Y, Leclerc M 2008 J. Am. Chem. Soc. 130 732

    [30]

    Mikroyannidis J, Kabanakis A, Kumar A, Sharma S, Vijay Y, Sharma G 2010 Langmuir 26 12909

    [31]

    Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K 2014 Synthetic Met. 198 314

    [32]

    Sun J, Wang H T, He J, Tian Y 2005 Phys. Rev. B 71 125132

  • [1]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [2]

    Ahmadi M, Dafeh S R, Fatehy H 2016 Chin. Phys. B 25 047201

    [3]

    Xu Z H, Chen W B, Ye W Q, Yang W F 2014 Acta Phys. Sin. 63 218801 (in Chinese) [许中华, 陈卫兵, 叶伟琼, 杨伟丰 2014 物理学报 63 218801]

    [4]

    Wang T H, Chen C B, Guo K P, Chen G, Xu T, Wei B 2016 Chin. Phys. B 25 038402

    [5]

    Jin S Q, Xu Z, Zhao S L, Zhao J, Li Y, Deng L J 2016 Acta Phys. Sin. 65 028801 (in Chinese) [金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟 2016 物理学报 65 028801]

    [6]

    He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y 2011 Adv. Mater. 23 4636

    [7]

    Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [8]

    Hou J H, Park M H, Zhang S Q, Yao Y, Chen L M, Li J, Yang Y 2008 Macromolecules 41 6012

    [9]

    Li Y W, Chen Y J, Liu X, Wang Z, Yang X M, Tu Y F, Zhu X L 2011 Macromolecules 44 6370

    [10]

    Wang X C, Sun Y P, Chen S, Guo X, Zhang M J, Li X Y, Li Y F, Wang H Q 2012 Macromolecules 45 1208

    [11]

    Wang X C, Jiang P, Chen Y, Luo H, Zhang Z G, Wang H Q, Li X Y, Yu G, Li Y F 2013 Macromolecules 46 4805

    [12]

    Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J 2012 Macromolecules 45 6415

    [13]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photonics 190 591

    [14]

    Pan H, Li Y, Wu Y, Liu P, Ong B S, Zhu S, Xu G 2007 J. Am. Chem. Soc. 129 4112

    [15]

    You J B, Dou L T, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [16]

    Kim J H, Shin S A, Park J B, Song C E, Shin W S, Yang H, Li Y F, Hwang D H 2014 Macromolecules 47 1613

    [17]

    Huang Y H, Zhang M, Chen H J, Wu F, Cao Z C, Zhang L J, Tan S T J 2014 J. Mater. Chem. A 2 5218

    [18]

    He P, Li Z F, Hou Q F, Wang Y L 2013 Chinese J. Org. Chem. 33 288

    [19]

    Stuart A C, Tumbleston J R, Zhou H X, Li W T, Liu S B, Ade H, You W 2013 J. Am. Chem. Soc. 135 1806

    [20]

    Zhou E J, Cong J Z, Hashimoto K, Tajima K 2013 Macromolecules 46 763

    [21]

    Kularatne R S, Sista P, Nguyen H Q, Bhatt M P, Biewer M C, Stefan M C 2012 Macromolecules 45 7855

    [22]

    Gedefaw D, Tessarolo M, Zhuang W L, Kroon R, Wang E G, Bolognesi M, Seri M, Muccinib M, Andersson M R 2014 Polym. Chem-UK. 5 2083

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Blchl P E 1994 Phys. Rev. B: Condens. Matter 50 17953

    [25]

    Yi D, Wu Z, Yang L, Dai Y, Xie S J 2015 Acta Phys. Sin. 64 187305 (in Chinese) [伊丁, 武镇, 杨柳, 戴瑛, 解士杰 2015 物理学报 64 187305]

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [27]

    Rieger R, Beckmann D, Mavrinskiy A, Kastler M, Mllen K 2010 Chem. Mater. 22 5314

    [28]

    Tang S, Zhang J 2011 J. Phys. Chem. A 115 5184

    [29]

    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Duricher G, Tao Y, Leclerc M 2008 J. Am. Chem. Soc. 130 732

    [30]

    Mikroyannidis J, Kabanakis A, Kumar A, Sharma S, Vijay Y, Sharma G 2010 Langmuir 26 12909

    [31]

    Azazi A, Mabrouk A, Chemek M, Kreher D, Alimi K 2014 Synthetic Met. 198 314

    [32]

    Sun J, Wang H T, He J, Tian Y 2005 Phys. Rev. B 71 125132

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240827
    [2] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [3] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [4] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [5] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [6] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [7] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [8] 范巍, 曾雉. 四元硫化物Cu2Zn(Ti, Zr, Hf)S4:一类新颖光伏材料. 物理学报, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [9] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [10] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [11] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [12] 张来斌, 任廷琦. 新型鸟嘌呤类似物y-鸟嘌呤及其异构体电子光谱性质的理论研究. 物理学报, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [13] 范巍, 曾雉. Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究. 物理学报, 2015, 64(23): 238801. doi: 10.7498/aps.64.238801
    [14] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [15] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [16] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [17] 陈晓波, 杨国建, 李崧, Sawanobori N., 徐怡庄, 陈晓端, 周固. 掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的研究. 物理学报, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [18] 陈晓波, 廖红波, 张春林, 于春雷, 潘伟, 胡丽丽, 吴正龙. 掺铒的纳米相氟氧化物玻璃陶瓷的多光子红外量子剪裁. 物理学报, 2010, 59(7): 5091-5099. doi: 10.7498/aps.59.5091
    [19] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  5750
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-03-07
  • 刊出日期:  2016-05-05

/

返回文章
返回