-
本文探究了c面蓝宝石衬底上AlGaN三元合金的等离子增强原子层沉积生长, 同时结合量子点敏化太阳能电池的制备, 研究了AlGaN合金的作用. AlGaN三元合金在原子层沉积过程中, 薄膜与衬底的界面以及带隙都与Al组分有关. 高Al组分时, AlGaN合金薄膜与衬底之间有较好的界面, 然而Al组分降低时, 界面变得粗糙. 原子层沉积制备的AlGaN合金具有较高的带隙, 与薄膜内的氧含量有关. 随后, 将AlN/GaN循环比例为1∶1的AlGaN薄膜分别制备CdSe/AlGaN/ZnS和CdSe/ZnS/AlGaN结构电池并进行了量子点太阳能电池的制备和分析. 结果发现, AlGaN对量子点和TiO2有修饰钝化作用, 可以包裹和保护TiO2和CdSe量子点结构, 从而避免了光生载流子的复合. 这种修饰作用也体现在改善量子点太阳能电池的开路电压、短路电流、填充因子和光电转化效率方面, 尝试从原子层沉积制备的AlGaN薄膜在改变载流子传输方面进行讨论.
-
关键词:
- AlGaN /
- 等离子体增强型原子层沉积 /
- CdSe量子点 /
- 太阳能电池
The role of plasma-enhanced atomic layer deposition growth of AlGaN ternary alloys on c-planar sapphire substrates and the preparation of quantum dot-sensitized solar cells are explored in this work. The interface between the film and the substrate as well as the band gap of AlGaN ternary alloys during atomic layer deposition is dependent on Al component. At high Al fraction, there appears a good interface between the AlGaN alloy film and the substrate, however, the interface becomes rough when the Al fraction is reduced. The AlGaN alloy prepared by atomic layer deposition has a high band gap, which is related to the oxygen content within the film. Subsequently, CdSe/AlGaN/ZnS and CdSe/ZnS/AlGaN structured cells are prepared and analyzed for quantum dot solar cells from AlGaN films with an AlN/GaN cycle ratio of 1∶1. It is found that AlGaN can modify and passivate quantum dots and TiO2, which can wrap and protect the structure of TiO2 and CdSe quantum dot, thus avoiding the recombination of photo-generated carriers. This modification effect is also reflected in the improvement of open-circuit voltage, short-circuit current, filling factor and photovoltaic conversion efficiency of quantum dot solar cells. These factors are discussed in this work, trying to modify carrier transport characteristics of AlGaN films prepared by atomic layer deposition.-
Keywords:
- AlGaN /
- plasma enhanced atomic layer deposition /
- CdSe quantum dots /
- solar cell
[1] Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martínez D, Cunhad L, Knez M 2021 Dalton. Trans. 50 15062Google Scholar
[2] Zhang X L, Liu Q Y, Liu B D, Yang W J, Li J, Niu P J, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar
[3] Zhang X L, Liu B D, Liu Q Y, Yang W J M, Xiong C, Li J, Jiang X 2017 Appl. Mater. Interfaces 9 2669Google Scholar
[4] Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol A 37 020926Google Scholar
[5] Iliopoulos E, Moustakas T D 2002 Appl. Phys. Lett. 81 295Google Scholar
[6] Moon Y T, Kim D J, Park J S, Oh J T, Lee J M, Ok Y W, Kim H, Park S J 2001 Appl. Phys. Lett. 79 599Google Scholar
[7] Wu J 2009 J. Appl. Phys. 106 5
[8] Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Körner H J 1997 Appl. Phys. Lett. 71 1504Google Scholar
[9] Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar
[10] Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Cimalla V, Goldhahn R 2008 J. Appl. Phys. 104 084516Google Scholar
[11] Jebalin B K, Shobha R A, Prajoon P, Kumar N M, Nirmal D 2015 Microelectron. J. 46 1387Google Scholar
[12] Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H 2017 Phys. Status Solidi A 214 1600836Google Scholar
[13] Ruterana P, De Saint Jores G, Laügt M, Omnes F, Bellet-Amalric E 2001 Appl. Phys. Lett. 78 344Google Scholar
[14] Yang W X, Zhao Y K, Wu Y Y, Li X F, Xing Z W, Bian L F, Lu S L, Luo M C 2019 J. Cryst. Growth 512 213Google Scholar
[15] Puurunen R L 2005 J. Appl. Phys. 97 9
[16] Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar
[17] Liu S J, Zhao G, He Y F, Wei H Y, Li Y, Qiu P, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar
[18] Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar
[19] Liu S J, Peng M Z, Hou C X, He Y F, Li M L, Zheng X H 2017 Nanoscale Res. Lett. 12 1Google Scholar
[20] Qiu P, Wei H Y, An Y, Wu Q, Du W, Jiang Z, Zheng X H 2019 Ceram Int. 46 5765
[21] He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Zheng X H 2019 Acta Metall. Sin. (English Letters) 32 1530Google Scholar
[22] He Y F, Li M L, Wei H Y, Song Y, Qiu P, Peng M, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar
[23] Song Y, He Y F, Li Y, Wei H Y, Qiu P, Huang Q, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar
[24] Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar
[25] Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar
[26] Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar
[27] Rouf P, Palisaitis J, Bakhit B, O’Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar
[28] Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2020 J. Alloy. Compd. 854 157186
[29] Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A 2017 Nat. Mater. 16 522Google Scholar
[30] Wei H Y, Wu J, Qiu P, Liu S, He Y F, Peng MZ, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar
[31] Wei H Y, Qiu P, Peng M Z, Wu Q, Liu S, An Y, He Y F, Song Y M, Zheng X H 2019 Appl. Surf. Sci. 476 608Google Scholar
[32] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和 2021 物理学报 70 187702Google Scholar
Li Y, Wang X X, Wei H Y, Qiu P, He Y F, Song Y M, Duan Z, Shen C T, Peng M Z, Zheng X H 2021 Acta Phys. Sin. 70 187702Google Scholar
[33] Zhang Q, Parimoo H, Martel E, Zhao S 2022 Ecs. J. Solid State Sc. 11 116002Google Scholar
[34] Portillo M C, Hernández S G, Bernal Y P, Velis I M, Cab J V, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar
[35] Koo A, Budde F, Ruck B, Trodahl H, Bittar A, Preston A, Zeinert A 2006 J. Appl. Phys. 99 034312Google Scholar
[36] Choi Y Y, Choi K H, Kim H K 2011 J. Electrochem. Soc. 158 J349Google Scholar
[37] Su L X, Chen S Y, Zhao L Q, Zuo Y Q, Xie J 2020 Appl. Phys. Lett. 117 211101Google Scholar
[38] Sun X J, Wu C, Wang Y C, Guo D Y 2022 J. Vacuum Sci. Technol. B 40 012204Google Scholar
[39] Zhang J, Li S L, Xiong H, Tian W, Li Y, Fang Y Y, Wu Z H, Dai J N, Xu J T, Li X Y, Chen C Q 2014 Nanoscale Res. Lett. 9 341Google Scholar
[40] 梁琦, 杨孟骐, 张京阳, 王如志 2022 物理学报 71 097302Google Scholar
Liang Q, Yang M Q, Zhang J Y, Wang R Z 2022 Acta Phys. Sin. 71 097302Google Scholar
[41] 冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 物理学报 62 117302Google Scholar
Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302Google Scholar
[42] Motamedi P, Cadien K 2014 Appl. Surf. Sci. 315 104Google Scholar
[43] Alevli M, Haider A, Kizir S, Leghari S A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137Google Scholar
[44] Wang Q, Cheng X H, Zheng L, Shen L Y, Li J L, Zhang D L, Qian R, Yu Y H 2017 RSC Adv. 7 11745Google Scholar
[45] Qu L H, Peng X G 2002 J. Am. Chem. Soc. 124 2049Google Scholar
[46] Ren F M, Li S J, He C L 2015 Sci. China Mater. 58 490Google Scholar
-
表 1 不同循环比例生长的AlGaN薄膜的元素组成
Table 1. Elemental composition of AlGaN films grown with different cyclic ratios.
Samples Al/% Ga/% N/% O/% C/% A3G1 37.97 4.21 16.03 38.56 3.32 A1G1 31.89 7.28 20.83 35.18 4.82 A1G3 21.88 17.53 27.7 29.53 3.36 表 2 5, 20和30 cycles AlGaN薄膜不同结构J-V测试结果
Table 2. J-V test results for different structures of 5, 20 and 30 cycles AlGaN films.
Samples Jsc/(mA·cm–2) Voc/V FF/% PCE/% 5AlGaN/ZnS 9.3 0.56 60.28 3.13 ZnS/5AlGaN 7.71 0.53 60.49 2.5 20AlGaN/ZnS 8.36 0.56 62.69 2.91 ZnS/20AlGaN 7.9 0.54 56.87 2.44 30AlGaN/ZnS 6.02 0.51 65.92 2.01 ZnS/30AlGaN 5.39 0.49 58.81 1.57 RC 6.81 0.51 58.59 2.02 表 3 5, 20和30 cycles AlGaN QDSCs的电化学阻抗谱拟合结果
Table 3. Electrochemical impedance spectrum fitting results for 5, 20 and 30 cycles AlGaN QDSCs.
Samples cycles 5 20 30 ${R_{ {\text{ct-Ti} }{{\text{O} }_{\text{2} } } }}/\Omega$ 18.93 32.72 41.97 -
[1] Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martínez D, Cunhad L, Knez M 2021 Dalton. Trans. 50 15062Google Scholar
[2] Zhang X L, Liu Q Y, Liu B D, Yang W J, Li J, Niu P J, Jiang X 2017 J. Mater. Chem. C 5 4319Google Scholar
[3] Zhang X L, Liu B D, Liu Q Y, Yang W J M, Xiong C, Li J, Jiang X 2017 Appl. Mater. Interfaces 9 2669Google Scholar
[4] Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol A 37 020926Google Scholar
[5] Iliopoulos E, Moustakas T D 2002 Appl. Phys. Lett. 81 295Google Scholar
[6] Moon Y T, Kim D J, Park J S, Oh J T, Lee J M, Ok Y W, Kim H, Park S J 2001 Appl. Phys. Lett. 79 599Google Scholar
[7] Wu J 2009 J. Appl. Phys. 106 5
[8] Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Körner H J 1997 Appl. Phys. Lett. 71 1504Google Scholar
[9] Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar
[10] Tonisch K, Buchheim C, Niebelschütz F, Schober A, Gobsch G, Cimalla V, Goldhahn R 2008 J. Appl. Phys. 104 084516Google Scholar
[11] Jebalin B K, Shobha R A, Prajoon P, Kumar N M, Nirmal D 2015 Microelectron. J. 46 1387Google Scholar
[12] Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H 2017 Phys. Status Solidi A 214 1600836Google Scholar
[13] Ruterana P, De Saint Jores G, Laügt M, Omnes F, Bellet-Amalric E 2001 Appl. Phys. Lett. 78 344Google Scholar
[14] Yang W X, Zhao Y K, Wu Y Y, Li X F, Xing Z W, Bian L F, Lu S L, Luo M C 2019 J. Cryst. Growth 512 213Google Scholar
[15] Puurunen R L 2005 J. Appl. Phys. 97 9
[16] Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar
[17] Liu S J, Zhao G, He Y F, Wei H Y, Li Y, Qiu P, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar
[18] Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar
[19] Liu S J, Peng M Z, Hou C X, He Y F, Li M L, Zheng X H 2017 Nanoscale Res. Lett. 12 1Google Scholar
[20] Qiu P, Wei H Y, An Y, Wu Q, Du W, Jiang Z, Zheng X H 2019 Ceram Int. 46 5765
[21] He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Zheng X H 2019 Acta Metall. Sin. (English Letters) 32 1530Google Scholar
[22] He Y F, Li M L, Wei H Y, Song Y, Qiu P, Peng M, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar
[23] Song Y, He Y F, Li Y, Wei H Y, Qiu P, Huang Q, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar
[24] Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar
[25] Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar
[26] Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar
[27] Rouf P, Palisaitis J, Bakhit B, O’Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar
[28] Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2020 J. Alloy. Compd. 854 157186
[29] Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A 2017 Nat. Mater. 16 522Google Scholar
[30] Wei H Y, Wu J, Qiu P, Liu S, He Y F, Peng MZ, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar
[31] Wei H Y, Qiu P, Peng M Z, Wu Q, Liu S, An Y, He Y F, Song Y M, Zheng X H 2019 Appl. Surf. Sci. 476 608Google Scholar
[32] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和 2021 物理学报 70 187702Google Scholar
Li Y, Wang X X, Wei H Y, Qiu P, He Y F, Song Y M, Duan Z, Shen C T, Peng M Z, Zheng X H 2021 Acta Phys. Sin. 70 187702Google Scholar
[33] Zhang Q, Parimoo H, Martel E, Zhao S 2022 Ecs. J. Solid State Sc. 11 116002Google Scholar
[34] Portillo M C, Hernández S G, Bernal Y P, Velis I M, Cab J V, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar
[35] Koo A, Budde F, Ruck B, Trodahl H, Bittar A, Preston A, Zeinert A 2006 J. Appl. Phys. 99 034312Google Scholar
[36] Choi Y Y, Choi K H, Kim H K 2011 J. Electrochem. Soc. 158 J349Google Scholar
[37] Su L X, Chen S Y, Zhao L Q, Zuo Y Q, Xie J 2020 Appl. Phys. Lett. 117 211101Google Scholar
[38] Sun X J, Wu C, Wang Y C, Guo D Y 2022 J. Vacuum Sci. Technol. B 40 012204Google Scholar
[39] Zhang J, Li S L, Xiong H, Tian W, Li Y, Fang Y Y, Wu Z H, Dai J N, Xu J T, Li X Y, Chen C Q 2014 Nanoscale Res. Lett. 9 341Google Scholar
[40] 梁琦, 杨孟骐, 张京阳, 王如志 2022 物理学报 71 097302Google Scholar
Liang Q, Yang M Q, Zhang J Y, Wang R Z 2022 Acta Phys. Sin. 71 097302Google Scholar
[41] 冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 物理学报 62 117302Google Scholar
Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 117302Google Scholar
[42] Motamedi P, Cadien K 2014 Appl. Surf. Sci. 315 104Google Scholar
[43] Alevli M, Haider A, Kizir S, Leghari S A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 01A137Google Scholar
[44] Wang Q, Cheng X H, Zheng L, Shen L Y, Li J L, Zhang D L, Qian R, Yu Y H 2017 RSC Adv. 7 11745Google Scholar
[45] Qu L H, Peng X G 2002 J. Am. Chem. Soc. 124 2049Google Scholar
[46] Ren F M, Li S J, He C L 2015 Sci. China Mater. 58 490Google Scholar
计量
- 文章访问数: 3119
- PDF下载量: 54
- 被引次数: 0