搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究

范巍 曾雉

引用本文:
Citation:

Cu2ZnSnS4晶界性质与光伏效应的第一性原理研究

范巍, 曾雉

First-principles studies on the properties of Cu2ZnSnS4 grain-boundaries due to photovoltaic effect

Fan Wei, Zeng Zhi
PDF
导出引用
  • 本文应用第一性原理电子结构计算方法研究了锌黄锡矿Cu2ZnSnS4 (CZTS)晶界的性质: 包括微结构和电子结构及其对光伏效应的影响. 计算结果表明: 从p-n结区扩散过来空穴可以翻越一定势垒后被晶界俘获, 晶界进一步提供载流子扩散的快速通道, 使得这些空穴可以快速运动到阳极. 少数载流子电子在晶界中心区附近感受到很高的静电势垒, 但其高势垒两侧存在的势阱可以束缚少量电子. 对多数载流子空穴, 晶界中心则是势阱, 势阱两边有阻止空穴扩散到晶界中心的势垒. 由于CZTS晶体的易解理面是(112), 晶界面与(112)面平行的扭转晶界 3*[221]和 6*[221] 等不破坏原有晶体的基本结构, 它们的晶界能很小, 而且其电子结构与晶体内部基本相同, 因此尽管它们大量存在于CZTS材料中, 但是对材料性质仅有很小的影响. 通过比较晶体、晶界、空腔的表面和纳米棒的电子结构和光吸收系数, 我们可以看出: 这些微结构会在带隙内引入新的能级(复合中心), 同时高的孔隙率会降低(大于1.3 eV)光的吸收系数, 因此提高CZTS薄膜的致密度是提高CZTS太阳能电池效率关键.
    Microstructures and electronic structures of Cu2ZnSnS4 (CZTS) grain-boundaries (GB) are studied by the first-principles electronic structure method. Some special twist grain-boundaries have low grain-boundary energies and exhibit similar electronic structure as that in a perfect crystal. The twist grain-boundaries such as 3[221] and 6[221] have grain-boundary planes parallel to (112) plane, the easiest cleavage plane, so that they have small damages to the crystal structure and small influence on the properties of the materials. Grain-boundary plays two roles in CZTS thin-films: (1) capturing and trapping holes from p-n junctions, and (2) providing fast channels for transportation of majority carriers. As the majority of carriers, the positively charged holes need override a barrier before being trapped by a potential-well in the grain-boundary region. For the minority of carriers, the grain boundary is a high barrier to prevent electrons from transporting across it. The intrinsic nature of the potential barrier is not very clear. By calculating the distributions of static potentials across different grain boundaries of CZTS and also by comparing them with those across different surfaces, we find that the potential barriers at grain boundaries are the remnants of the potential barriers of surfaces, which trap the electrons in the bulk and prevent the electrons from escaping from the bulk to vacuum. When two surfaces get contact to form a grain boundary the corresponding surface barriers will be merged together as one potential barrier of the grain boundary. It is obvious that if a grain boundary intersects with the surface, the escaping work function near the grain boundary is lower than that near the prefect crystal surface. Experiment shows the coexistence of Sn4+ and Sn2+ions. The Sn4+ ions are located in the bulk by bonding 4 S atoms as neighbors. Our results show that Sn2+ ions can appear in the grain-boundary regions, on the surfaces or in the bulk with lattice defects so that Sn2+ ions have the lower coordination number by bonding 3 S atoms. The Sn atom is favored to be at the center of S octahedron with six neighboring S (or O) atoms in most sulfides (oxides) of tin. In CZTS, Sn atom is at the center of tetrahedron with 4 neighboring S atoms so that Sn atom is very active to move by structural relaxations. Most importantly the conduction-bands in CZTS are formed by the hybridizations between the s electrons of Sn and p electrons of S so that the conduction-bands of CZTS are sensitively dependent on the distributions and properties of Sn atoms. The appearing of Sn2+ ions and the strong structural relaxations of Sn atoms in grain-boundary regions and on surfaces induce extra in-gap states as a new source for the recombination of electron-hole pairs that are un-favored to the photo-voltage effects. Generally, the grain boundary plays a negative role in brittle photo-voltage materials such as Si and GaAs, and the positive role in ductile photo-voltage materials such as CdTe and CIGS (Cu(InGa)Se2). It means that the growth of the hard and brittle films is very difficult, the micro-cracks and micro-pores are easily created. Our calculations show that CdTe, CIGS and CZTS are all ductile with Poisson-ratio greater than 0.33. This means that CZTS can be used as the absorber of flexible solar cell. By comparing the optical absorption-coefficients of crystals, grain-boundaries, surfaces and nano-particles, we find that the internal surfaces in thin-films with high pore-ratio can create new energy-levels in band-gap, which enhances the recombination between electrons and holes and decreases the optical absorption-coefficients (1.3 eV). As a result, the high dense CZTS thin-film is required for high-efficient CZTS solar-cell. The positive role of grain boundary is more important if the CZTS film has the large, unique oriented grains and the uniform distribution of grain sizes. The simple and regular grain-boundary network is more beneficial to the coherent transport of majority carriers.
      通信作者: 范巍, fan@theory.issp.ac.cn
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2012CB933702)资助的课题.
      Corresponding author: Fan Wei, fan@theory.issp.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB933702).
    [1]

    Ito K, Nakazawa T 1988 Japanese Journal of Applied Physics 27 2094

    [2]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res. Appl. 21 72

    [3]

    Xu Jia-Xiong, Yao Ruo-He 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [4]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [5]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [6]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [7]

    Strohm A, Eisenmann L, Gebhardt R K, Harding A, Schlötzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162

    [8]

    Jiang C -S, Noufi R, AbuShama J A, Ramanathan K, Moutinho H R, Pankow J, AI-Jassim M M 2004 Applied Physics Letters 84 3477

    [9]

    Azulay D, Millo O, Balberg I, Schock H W, Visoly-Fisher I, Cahen D 2007 Solar Energy Materials & Sollar Cells 91 85

    [10]

    Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603

    [11]

    Li J B, Chawla V, Clemens B M 2012 Adv. Mater. 24 720

    [12]

    Jeong A R, Jo W, Jung S, Gwak J, Yun J H 2011 Applied Physics Letters 99 082103

    [13]

    Haight R, Shao X Y, Wang W, Mitzi D B 2014 Applied Physics Letters 104 033902

    [14]

    Kosyak V, Karmarkar M A, Scarpulla M A 2012 Applied Physics Letters 100 263903

    [15]

    Mendis B G, Goodman M C J, Major J D, Tayler A A, Durose K, Halliday D P 2012 Journal of Applied Physics 112 124508

    [16]

    Persson C, Zunger A 2003 Phys. Rev. Lett. 91 266401

    [17]

    Persson C, Zunger A 2005 Applied Physics Letters 87 211904

    [18]

    Schmidt S S, Abou-Ras D, Sadewasser S, Yin W J, Feng C B Yan Y F 2012 Phys. Rev. Lett. 109 095506

    [19]

    Yan Y F, Jiang C S, Noufi R, Wei S H, Moutinho H R, Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504

    [20]

    Li J W, Mitzi D B, Shenoy V B 2011 ACSNANO 5 8613

    [21]

    Medvedeva N I, Shalaeva E V, Kuznetsov M V, Yakushev M V 2006 Phys. Rev. B 73 035207

    [22]

    Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P, Liu L 2014 J. Phys. D: Appl. Phys. 47 075304

    [23]

    Bao W, Ichimura M 2012 International Journal of Photoenergy,ArticleID 61982

    [24]

    Xu P, Chen S Y, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Gajdoš M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

    [29]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials, Clarendon Press, Oxford

    [30]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [31]

    Fan W, Liu D Y, Zeng Z 2014 Physica C 497 110

    [32]

    Grossberg M, Raadik T, Raudoja J, Krustok J 2014 Current Applied Phsyics 14 447

    [33]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [34]

    Yang C Y, Qin M S, Wang Y M, Wan D Y, Huang F Q, Lin J H 2013 Sci. Rep. 3, 1286

    [35]

    Fan Wei, Zeng Zhi 2014 Acta Phys. Sin. 63 047503 (in Chinese) [范巍, 曾雉 2014 物理学报 63 047503]

    [36]

    Liu Hao, Xue Yu-Ming, Qiao Zai-Xiang, Li Wei, Zhang Chao, Yin Fu-Hong, Feng Shao-Jun 2015 Acta Phys. Sin.64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801]

    [37]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 物理学报 63 018801]

    [38]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1]

    Ito K, Nakazawa T 1988 Japanese Journal of Applied Physics 27 2094

    [2]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res. Appl. 21 72

    [3]

    Xu Jia-Xiong, Yao Ruo-He 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [4]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [5]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [6]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [7]

    Strohm A, Eisenmann L, Gebhardt R K, Harding A, Schlötzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162

    [8]

    Jiang C -S, Noufi R, AbuShama J A, Ramanathan K, Moutinho H R, Pankow J, AI-Jassim M M 2004 Applied Physics Letters 84 3477

    [9]

    Azulay D, Millo O, Balberg I, Schock H W, Visoly-Fisher I, Cahen D 2007 Solar Energy Materials & Sollar Cells 91 85

    [10]

    Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603

    [11]

    Li J B, Chawla V, Clemens B M 2012 Adv. Mater. 24 720

    [12]

    Jeong A R, Jo W, Jung S, Gwak J, Yun J H 2011 Applied Physics Letters 99 082103

    [13]

    Haight R, Shao X Y, Wang W, Mitzi D B 2014 Applied Physics Letters 104 033902

    [14]

    Kosyak V, Karmarkar M A, Scarpulla M A 2012 Applied Physics Letters 100 263903

    [15]

    Mendis B G, Goodman M C J, Major J D, Tayler A A, Durose K, Halliday D P 2012 Journal of Applied Physics 112 124508

    [16]

    Persson C, Zunger A 2003 Phys. Rev. Lett. 91 266401

    [17]

    Persson C, Zunger A 2005 Applied Physics Letters 87 211904

    [18]

    Schmidt S S, Abou-Ras D, Sadewasser S, Yin W J, Feng C B Yan Y F 2012 Phys. Rev. Lett. 109 095506

    [19]

    Yan Y F, Jiang C S, Noufi R, Wei S H, Moutinho H R, Al-Jassim M M 2007 Phys. Rev. Lett. 99 235504

    [20]

    Li J W, Mitzi D B, Shenoy V B 2011 ACSNANO 5 8613

    [21]

    Medvedeva N I, Shalaeva E V, Kuznetsov M V, Yakushev M V 2006 Phys. Rev. B 73 035207

    [22]

    Dong Z Y, Li Y F, Yao B, Ding Z H, Yang G, Deng R, Fang X, Wei Z P, Liu L 2014 J. Phys. D: Appl. Phys. 47 075304

    [23]

    Bao W, Ichimura M 2012 International Journal of Photoenergy,ArticleID 61982

    [24]

    Xu P, Chen S Y, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Gajdoš M, Hummer K, Kresse G, Furthmller J, Bechstedt F 2006 Phys. Rev. B 73 045112

    [29]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials, Clarendon Press, Oxford

    [30]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [31]

    Fan W, Liu D Y, Zeng Z 2014 Physica C 497 110

    [32]

    Grossberg M, Raadik T, Raudoja J, Krustok J 2014 Current Applied Phsyics 14 447

    [33]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [34]

    Yang C Y, Qin M S, Wang Y M, Wan D Y, Huang F Q, Lin J H 2013 Sci. Rep. 3, 1286

    [35]

    Fan Wei, Zeng Zhi 2014 Acta Phys. Sin. 63 047503 (in Chinese) [范巍, 曾雉 2014 物理学报 63 047503]

    [36]

    Liu Hao, Xue Yu-Ming, Qiao Zai-Xiang, Li Wei, Zhang Chao, Yin Fu-Hong, Feng Shao-Jun 2015 Acta Phys. Sin.64 068801 (in Chinese) [刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801]

    [37]

    Sun K W, Su Z H, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X 2014 Acta Phys. Sin. 63 018801 (in Chinese) [孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔 2014 物理学报 63 018801]

    [38]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [3] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [4] 李津, 王海燕, 李优, 张秋月, 贾瑜. 氧族元素对D-A和D--A共聚物光吸收谱红移的第一性原理研究. 物理学报, 2016, 65(10): 103101. doi: 10.7498/aps.65.103101
    [5] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [9] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [10] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究. 物理学报, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [14] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 物理学报, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  5130
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 修回日期:  2015-08-16
  • 刊出日期:  2015-12-05

/

返回文章
返回