搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程

仲婷婷 郝会颖

引用本文:
Citation:

基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程

仲婷婷, 郝会颖
cstr: 32037.14.aps.73.20241439

Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment

Zhong Ting-Ting, Hao Hui-Ying
cstr: 32037.14.aps.73.20241439
PDF
HTML
导出引用
  • 全无机CsPbX3材料作为一种新型的钙钛矿材料, 应用于太阳能电池, 具有生产高效、稳定的商用器件的潜在前景, 但由空穴传输材料和贵金属电极所带来的成本和稳定性问题却亟需解决, 由此基于无空穴传输层结构(HTL-free)的全无机体系的碳基钙钛矿太阳能电池(C-PSCs)引起了广泛关注. 本文通过精细调控X位卤素阴离子中I和Br的比例, 基于一步反溶剂法, 在大气环境下制备CsPbIxBr3–x薄膜和HTL-free C-PSCs, 找到兼顾效率和稳定的平衡点. 之后, 为进一步提高相应器件的性能, 将苯乙基溴化胺(PEABr)引入钙钛矿中, 最终基于PEABr处理后的钙钛矿薄膜具有更好的结晶度以及更低的缺陷态密度, 而生成少量二维钙钛矿能够钝化钙钛矿薄膜, 并抑制载流子的非辐射复合. 通过适量PEABr处理后, 器件的光电转换效率(PCE)显著增强, 从对照组最佳器件的10.18%提高到12.61%. 由此, 该方法为大气环境下制备高效率、低成本的HTL-free C-PSCs提供了优化思路.
    The new all-inorganic CsPbX3 perovskite material is expected to be used as an absorbing layer to prepare solar cells for efficient and stable commercial devices. However, the problems of high cost and poor stability, caused by precious metal electrodes and hole transport materials, urgently need solving. Therefore, carbon-based perovskite solar cells (C-PSCs) based on the HTL-free all-inorganic system have attracted widespread attention. This work adopts a strategy of finely regulating the ratio of I to Br in X-site of perovskite. Using the one-step anti-solvent method, CsPbIxBr3–x films and HTL-free C-PSCs are prepared under ambient air condition. By comparing their light absorption characteristics, carrier transport, and corresponding optoelectronic properties, a balance point between efficiency and stability is found. Finally, HTL-free C-PSCs achieve an optimal efficiency of 10.10% and can be stably prepared under ambient air conditions. In order to further improve the performance of the corresponding devices, phenylethylammonium bromide (PEABr) is introduced into the perovskite, and the crystallinity, carrier transport, defect situation, and corresponding optoelectronic properties of perovskite films and devices are compared under different conditions. Ultimately, the perovskite film treated with PEABr reaches better crystallinity and lower defect density, while generating a small amount of two-dimensional perovskite which can passivate the perovskite film and suppress non-radiative recombination of charge carriers. After appropriate PEABr treatment, the photoelectric conversion efficiency (PCE) of the device is significantly enhanced, increasing from 10.18% of the optimal device in the control group to 12.61%. Thus, this method provides an optimal approach for preparing efficient and low-cost HTL-free C-PSCs under ambient air environments.
      通信作者: 郝会颖, huiyinghaoL@cugb.edu.cn
    • 基金项目: 中国科学院半导体研究所半导体材料科学重点实验室开放基金(批准号: KLSMS-1901)资助的课题.
      Corresponding author: Hao Hui-Ying, huiyinghaoL@cugb.edu.cn
    • Funds: Project supported by the Open Foundation of Key Laboratory of Semiconductor Materials Science Institute of Semiconductors, Chinese Academy of Sciences (Grant No. KLSMS-1901).
    [1]

    Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M , Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Wang Y C, Chang J W, Zhu L P, Li X D, Song C J, Fang J F 2018 Adv. Funct. Mater 28 1706317Google Scholar

    [3]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [4]

    Li Q Y, Liu H, Hou C H, Yan H M, Li S D, Chen P, Xu H Y, Yu W Y, Zhao Y P, Sui Y P, Zhong Q X, Ji Y Q, Shyue J J, Jia S, Yang B, Tang P Y, Gong Q H, Zhao L C, Zhu R 2024 Nat. EnergyGoogle Scholar

    [5]

    Zhou Y Y, Zhao Y X 2019 Energ. Environ. Sci. 12 1495Google Scholar

    [6]

    Chen S, Wen X M, Huang S J, Huang F Z, Cheng Y B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

    [7]

    Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938Google Scholar

    [8]

    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [9]

    Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y B, Grimm R L, Pacifici D, Zeng X C, Zhou Y Y, Padture N P 2019 Nat. Commun. 10 16Google Scholar

    [10]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [11]

    Zhang X, Yu Z H, Zhang D, Tai Q D, Zhao X Z 2022 Adv. Energy Mater. 13 2201320

    [12]

    Zhang H, Xiang W C, Zuo X J, Gu X J, Zhang S, Du Y C, Wang Z T, Liu Y L, Wu H F, Wang P J, Cui Q Y, Su H, Tian Q W, Liu S Z 2022 Angew. Chem. Int. Edit. 62 e202216634

    [13]

    Chen H N, Yang S H 2017 Adv. Mater. 29 1603994Google Scholar

    [14]

    Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800Google Scholar

    [15]

    Wang K, Liu X Y, Huang R, Wu C C, Yang D, Hu X W, Jiang X F, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett. 4 1852Google Scholar

    [16]

    Xu B, Zhu Z L, Zhang J B, Liu H B, Chueh C C, Li X S, Jen A K Y 2017 Adv. Energy Mater. 7 1700683Google Scholar

    [17]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [18]

    Gong S P, Li H Y, Chen Z Q, Shou C H, Huang M J, Yang S W 2020 ACS Appl. Mater. Interfaces 12 34882Google Scholar

    [19]

    Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ. Environ. Sci. 13 1377Google Scholar

    [20]

    Wu X, Qi F, Li F Z, Deng X, Li Z, Wu S F, Liu T T, Liu Y Z, Zhang J, Zhu Z L 2020 Energy Environ. Mater. 4 95

    [21]

    Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Edit. 58 16691Google Scholar

    [22]

    Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61Google Scholar

    [23]

    Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196Google Scholar

    [24]

    Wang Z T, Tian Q W, Zhang H, Xie H D, Du Y C, Liu L, Feng X L, Najar A, Ren X D, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202305815Google Scholar

    [25]

    Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418Google Scholar

    [26]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chem. Int. Edit. 57 3787Google Scholar

    [27]

    Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar

    [28]

    Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R, Liao G L 2018 Nano Energy 50 201Google Scholar

    [29]

    Han Q J, Yang S Z, Wang L, Yu F Y, Zhang C, Wu M X, Ma T L 2021 Sol. Energy 216 351Google Scholar

  • 图 1  基于组分调控策略制备钙钛矿薄膜的流程示意图

    Fig. 1.  Schematic diagram of the process for preparing perovskite films based on component control strategy.

    图 2  基于添加剂工程制备钙钛矿薄膜的流程示意图

    Fig. 2.  Schematic diagram of the process for preparing perovskite films based on additive engineering.

    图 3  钙钛矿前驱液照片 (a) 过滤前; (b) 过滤后

    Fig. 3.  Photograph of perovskite precursor solution: (a) Before filtration; (b) after filtering.

    图 4  CsPbIxBr3–x薄膜照片 (a) 刚退火后; (b) 大气环境下放置一周后

    Fig. 4.  Photograph of CsPbIxBr3–x films: (a) Just after annealing; (b) after being placed in ambient air environment for one week.

    图 5  CsPbIxBr3–x薄膜的UV-vis光谱图

    Fig. 5.  UV-vis spectra of CsPbIxBr3–x films.

    图 6  CsPbIxBr3–x薄膜的稳态PL光谱图

    Fig. 6.  Steady state PL spectrum of CsPbIxBr3–x films.

    图 7  CsPbIxBr3–x不同I-Br配比下的最佳器件的J-V曲线

    Fig. 7.  J-V curves of optimal devices with different I-Br ratios for CsPbIxBr3–x.

    图 8  不同含量PEABr处理的钙钛矿薄膜的XRD图

    Fig. 8.  XRD patterns of perovskite films treated with different concentrations of PEABr.

    图 9  不同含量PEABr处理的钙钛矿薄膜的稳态PL光谱图

    Fig. 9.  Steady state PL spectrum of perovskite films treated with different concentrations of PEABr.

    图 10  不同含量PEABr处理的最佳器件的J-V曲线

    Fig. 10.  J-V curves of optimal devices treated with different concentrations of PEABr.

    图 11  不同含量PEABr处理的器件的光伏统计 (a) VOC; (b) JSC; (c) FF; (d) PCE

    Fig. 11.  Photovoltaic statistics of devices treated with different concentrations of PEABr: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 12  有无PEABr处理的器件在最大功率点时的稳态光电流和输出PCE

    Fig. 12.  Steady state photocurrent and output PCE of devices with or without PEABr processing at maximum power point.

    图 13  有无PEABr处理的器件的暗态J-V曲线

    Fig. 13.  Dark state J-V curves of devices with or without PEABr treatment.

    图 14  有无PEABr处理的器件的SCLC曲线

    Fig. 14.  SCLC curves of devices with or without PEABr treatment.

    图 15  有无PEABr处理的器件的电化学阻抗谱(插图为等效电路图)

    Fig. 15.  Electrochemical impedance spectroscopy of devices with or without PEABr treatment (illustrated as equivalent circuit diagram).

    表 1  CsPbIxBr3–x不同I-Br配比下的最佳器件的具体光伏参数

    Table 1.  The specific photovoltaic parameters of CsPbIxBr3–x devices with different I-Br ratios.

    DeviceVOC/VJSC/(mA·cm–2)FF/%PCE/%
    CsPbIBr21.297.7450.685.09
    CsPbI1.2Br1.81.279.4754.636.57
    CsPbI1.4Br1.61.2610.4655.547.32
    CsPbI1.6Br1.41.2511.9956.918.53
    CsPbI1.8Br1.21.2212.9563.9310.10
    CsPbI2Br1.2113.6162.3010.26
    下载: 导出CSV

    表 2  不同含量PEABr处理的器件的具体光伏参数

    Table 2.  Specific photovoltaic parameters of devices treated with PEABr at different concentrations.

    DeviceTypeVOC/VJSC/(mA·cm–2)FF/%PCE/%
    w/o-PEABrMax1.2313.1862.5910.18
    Average1.22 ± 0.0213.22 ± 0.2260.08 ± 2.459.66 ± 0.41
    30-PEABrMax1.2614.1565.9211.73
    Average1.25 ± 0.0214.01 ± 0.6862.55 ± 1.7910.93 ± 0.49
    50-PEABrMax1.2815.1964.9812.61
    Average1.28 ± 0.0214.71 ± 0.6263.14 ± 1.6511.84 ± 0.54
    70-PEABrMax1.2714.9263.7212.05
    Average1.27 ± 0.0214.24 ± 0.4561.96 ± 1.0311.18 ± 0.49
    注: 表中的平均值是由40组器件(每个条件10组)计算得出.
    下载: 导出CSV

    表 3  有无PEABr处理的器件的Nyquist plots模拟结果

    Table 3.  Nyquist plot simulation results of devices with and without PEABr processing.

    DeviceRSRrec
    w/o-PEABr68.896776
    with-PEABr48.5324866
    下载: 导出CSV
  • [1]

    Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M , Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Wang Y C, Chang J W, Zhu L P, Li X D, Song C J, Fang J F 2018 Adv. Funct. Mater 28 1706317Google Scholar

    [3]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [4]

    Li Q Y, Liu H, Hou C H, Yan H M, Li S D, Chen P, Xu H Y, Yu W Y, Zhao Y P, Sui Y P, Zhong Q X, Ji Y Q, Shyue J J, Jia S, Yang B, Tang P Y, Gong Q H, Zhao L C, Zhu R 2024 Nat. EnergyGoogle Scholar

    [5]

    Zhou Y Y, Zhao Y X 2019 Energ. Environ. Sci. 12 1495Google Scholar

    [6]

    Chen S, Wen X M, Huang S J, Huang F Z, Cheng Y B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

    [7]

    Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938Google Scholar

    [8]

    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [9]

    Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y B, Grimm R L, Pacifici D, Zeng X C, Zhou Y Y, Padture N P 2019 Nat. Commun. 10 16Google Scholar

    [10]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [11]

    Zhang X, Yu Z H, Zhang D, Tai Q D, Zhao X Z 2022 Adv. Energy Mater. 13 2201320

    [12]

    Zhang H, Xiang W C, Zuo X J, Gu X J, Zhang S, Du Y C, Wang Z T, Liu Y L, Wu H F, Wang P J, Cui Q Y, Su H, Tian Q W, Liu S Z 2022 Angew. Chem. Int. Edit. 62 e202216634

    [13]

    Chen H N, Yang S H 2017 Adv. Mater. 29 1603994Google Scholar

    [14]

    Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800Google Scholar

    [15]

    Wang K, Liu X Y, Huang R, Wu C C, Yang D, Hu X W, Jiang X F, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett. 4 1852Google Scholar

    [16]

    Xu B, Zhu Z L, Zhang J B, Liu H B, Chueh C C, Li X S, Jen A K Y 2017 Adv. Energy Mater. 7 1700683Google Scholar

    [17]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [18]

    Gong S P, Li H Y, Chen Z Q, Shou C H, Huang M J, Yang S W 2020 ACS Appl. Mater. Interfaces 12 34882Google Scholar

    [19]

    Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ. Environ. Sci. 13 1377Google Scholar

    [20]

    Wu X, Qi F, Li F Z, Deng X, Li Z, Wu S F, Liu T T, Liu Y Z, Zhang J, Zhu Z L 2020 Energy Environ. Mater. 4 95

    [21]

    Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Edit. 58 16691Google Scholar

    [22]

    Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61Google Scholar

    [23]

    Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196Google Scholar

    [24]

    Wang Z T, Tian Q W, Zhang H, Xie H D, Du Y C, Liu L, Feng X L, Najar A, Ren X D, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202305815Google Scholar

    [25]

    Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418Google Scholar

    [26]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chem. Int. Edit. 57 3787Google Scholar

    [27]

    Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar

    [28]

    Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R, Liao G L 2018 Nano Energy 50 201Google Scholar

    [29]

    Han Q J, Yang S Z, Wang L, Yu F Y, Zhang C, Wu M X, Ma T L 2021 Sol. Energy 216 351Google Scholar

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [3] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 物理学报, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [7] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [10] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [11] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [12] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [14] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [15] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计. 物理学报, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [18] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究. 物理学报, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [19] 许 颖, 刁宏伟, 张世斌, 励旭东, 曾湘波, 王文静, 廖显伯. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层. 物理学报, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [20] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池. 物理学报, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
计量
  • 文章访问数:  780
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-15
  • 修回日期:  2024-10-30
  • 上网日期:  2024-11-06
  • 刊出日期:  2024-12-05

/

返回文章
返回