-
全无机CsPbX3材料作为一种新型的钙钛矿材料应用于太阳能电池具有生产高效、稳定的商用器件的潜在前景,但由空穴传输材料和贵金属电极所带来的成本和稳定性问题却亟需解决,由此基于无空穴传输层结构(HTL-free)的全无机体系的碳基钙钛矿太阳能电池(C-PSCs)引起了广泛关注。本文通过精细调控X位卤素阴离子中I和Br的比例,基于一步反溶剂法,在大气环境下制备CsPbIxBr3-x薄膜和HTL-free C-PSCs,找到兼顾效率和稳定的平衡点。之后,为进一步提高相应器件的性能,将苯乙基溴化胺(PEABr)引入钙钛矿中,最终基于PEABr处理后的钙钛矿薄膜具有更好的结晶度以及更低的缺陷态密度,而生成少量二维钙钛矿能够钝化钙钛矿薄膜,并抑制载流子的非辐射复合。通过适量PEABr处理后,器件的光电转换效率(PCE)显著增强,从对照组最佳器件的10.18%提高到12.61%。由此,该方法为大气环境下制备高效率、低成本的HTL-free C-PSCs提供了优化思路。The new all-inorganic CsPbX3 perovskite material is expected to be used as an absorbing layer to prepare solar cells for efficient and stable commercial devices. However, the high cost and poor stability issues caused by hole transport materials and precious metal electrodes urgently need to be addressed. Therefore, carbon-based perovskite solar cells (C-PSCs) based on the HTL-free all-inorganic system have attracted widespread attention. This article adopts a strategy of finely regulating the ratio of I and Br in X-site of perovskite. Based on the one-step anti-solvent method, CsPbIxBr3-x films and HTL-free C-PSCs were prepared under ambient air conditions. By comparing their light absorption characteristics, carrier transport, and corresponding optoelectronic properties, a balance point between efficiency and stability was found. Finally, HTL-free C-PSCs achieved the best efficiency of 10.10 % and could be stably prepared under ambient air environments. Afterwards, in order to further improve the performance of the corresponding devices, phenylethylammonium bromide (PEABr) was introduced into the perovskite. And compare the crystallinity, carrier transport, defect situation, and corresponding optoelectronic properties of perovskite films and devices under different conditions. Ultimately, the perovskite film treated with PEABr had better crystallinity and lower defect density, while generating a small amount of two-dimensional perovskite could passivate the perovskite film and suppress non-radiative recombination of charge carriers. After appropriate PEABr treatment, the photoelectric conversion efficiency (PCE) of the device was significantly enhanced, increasing from 10.18 % of the optimal device in the control group to 12.61 %. Thus, this method provides an optimization approach for the preparation of efficient and low-cost HTL-free C-PSCs under ambient air environments.
-
Keywords:
- All-inorganic perovskite /
- solar cells /
- component control /
- additive engineering
-
[1] Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M, Gratzel M 2013 Nature 499 316-+
[2] Wang Y, Chang J, Zhu L, Li X, Song C, Fang J 2018 Adv. Funct. Mater 28 1706317
[3] Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu S 2018 Adv. Mater 30 1706576
[4] Li Q, Liu H, Hou C, Yan H, Li S, Chen P, Xu H, Yu W, Zhao Y, Sui Y, Zhong Q, Ji Y, Shyue J, Jia S, Yang B, Tang P, Gong Q, Zhao L, Zhu R 2024 Nat. Energy 10.1038/s41560-024-01642-3
[5] Zhou Y, Zhao Y 2019 Energ Environ Sci 12 1495-1511
[6] Chen S, Wen X, Huang S, Huang F, Cheng Y, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001
[7] Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun 8 13938
[8] Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y 2018 J. Am. Chem. Soc 140 3825-3828
[9] Chen M, Ju M, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y, Grimm R L, Pacifici D, Zeng X, Zhou Y, Padture N P 2019 Nat. Commun 10 16
[10] Wang J, Zhang J, Zhou Y, Liu H, Xue Q, Li X, Chueh C C, Yip H L, Zhu Z, Jen A K Y 2020 Nat. Commun 11 177
[11] Zhang X, Yu Z, Zhang D, Tai Q, Zhao X 2022 Adv. Energy Mater 13 2201320
[12] Zhang H, Xiang W, Zuo X, Gu X, Zhang S, Du Y, Wang Z, Liu Y, Wu H, Wang P, Cui Q, Su H, Tian Q, Liu S 2022 Angew Chem Int Edit 62 e202216634
[13] Chen H, Yang S 2017 Adv. Mater 29 1603994
[14] Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800-1815
[15] Wang K, Liu X, Huang R, Wu C, Yang D, Hu X, Jiang X, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett 4 1852-1861
[16] Xu B, Zhu Z, Zhang J, Liu H, Chueh C C, Li X, Jen A K Y 2017 Adv. Energy Mater 7 1700683
[17] Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z, Liu J 2016 J Am Chem Soc 138 15829-15832
[18] Gong S, Li H, Chen Z, Shou C, Huang M, Yang S 2020 ACS Appl Mater Interfaces 12 34882-34889
[19] Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ Environ Sci 13 1377-1407
[20] Wu X, Qi F, Li F, Deng X, Li Z, Wu S, Liu T, Liu Y, Zhang J, Zhu Z 2020 Energy Environ Mater 4 95-102
[21] Wang Y, Liu X, Zhang T, Wang X, Kan M, Shi J, Zhao Y 2019 Angew Chem Int Ed Engl 58 16691-16696
[22] Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61-67
[23] Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196-2201
[24] Wang Z, Tian Q, Zhang H, Xie H, Du Y, Liu L, Feng X, Najar A, Ren X, Liu S 2023 Angew Chem Int Edit 62 e202305815
[25] Zhou Q, Duan J, Du J, Guo Q, Zhang Q, Yang X, Duan Y, Tang Q 2021 Adv. Sci 8 e2101418
[26] Duan J, Zhao Y, He B, Tang Q 2018 Angew Chem Int Edit 57 3787-3791
[27] Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv Mater 30 e1801401
[28] Liu X, Liu Z, Sun B, Tan X, Ye H, Tu Y, Shi T, Tang Z, Liao G 2018 Nano Energy 50 201-211
[29] Han Q, Yang S, Wang L, Yu F, Zhang C, Wu M, Ma T 2021 Sol Energy 216 351-357
计量
- 文章访问数: 38
- PDF下载量: 2
- 被引次数: 0