-
全无机CsPbX3材料作为一种新型的钙钛矿材料, 应用于太阳能电池, 具有生产高效、稳定的商用器件的潜在前景, 但由空穴传输材料和贵金属电极所带来的成本和稳定性问题却亟需解决, 由此基于无空穴传输层结构(HTL-free)的全无机体系的碳基钙钛矿太阳能电池(C-PSCs)引起了广泛关注. 本文通过精细调控X位卤素阴离子中I和Br的比例, 基于一步反溶剂法, 在大气环境下制备CsPbIxBr3–x薄膜和HTL-free C-PSCs, 找到兼顾效率和稳定的平衡点. 之后, 为进一步提高相应器件的性能, 将苯乙基溴化胺(PEABr)引入钙钛矿中, 最终基于PEABr处理后的钙钛矿薄膜具有更好的结晶度以及更低的缺陷态密度, 而生成少量二维钙钛矿能够钝化钙钛矿薄膜, 并抑制载流子的非辐射复合. 通过适量PEABr处理后, 器件的光电转换效率(PCE)显著增强, 从对照组最佳器件的10.18%提高到12.61%. 由此, 该方法为大气环境下制备高效率、低成本的HTL-free C-PSCs提供了优化思路.The new all-inorganic CsPbX3 perovskite material is expected to be used as an absorbing layer to prepare solar cells for efficient and stable commercial devices. However, the problems of high cost and poor stability, caused by precious metal electrodes and hole transport materials, urgently need solving. Therefore, carbon-based perovskite solar cells (C-PSCs) based on the HTL-free all-inorganic system have attracted widespread attention. This work adopts a strategy of finely regulating the ratio of I to Br in X-site of perovskite. Using the one-step anti-solvent method, CsPbIxBr3–x films and HTL-free C-PSCs are prepared under ambient air condition. By comparing their light absorption characteristics, carrier transport, and corresponding optoelectronic properties, a balance point between efficiency and stability is found. Finally, HTL-free C-PSCs achieve an optimal efficiency of 10.10% and can be stably prepared under ambient air conditions. In order to further improve the performance of the corresponding devices, phenylethylammonium bromide (PEABr) is introduced into the perovskite, and the crystallinity, carrier transport, defect situation, and corresponding optoelectronic properties of perovskite films and devices are compared under different conditions. Ultimately, the perovskite film treated with PEABr reaches better crystallinity and lower defect density, while generating a small amount of two-dimensional perovskite which can passivate the perovskite film and suppress non-radiative recombination of charge carriers. After appropriate PEABr treatment, the photoelectric conversion efficiency (PCE) of the device is significantly enhanced, increasing from 10.18% of the optimal device in the control group to 12.61%. Thus, this method provides an optimal approach for preparing efficient and low-cost HTL-free C-PSCs under ambient air environments.
-
Keywords:
- all-inorganic perovskite /
- solar cells /
- component control /
- additive engineering
[1] Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M , Gratzel M 2013 Nature 499 316Google Scholar
[2] Wang Y C, Chang J W, Zhu L P, Li X D, Song C J, Fang J F 2018 Adv. Funct. Mater 28 1706317Google Scholar
[3] Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar
[4] Li Q Y, Liu H, Hou C H, Yan H M, Li S D, Chen P, Xu H Y, Yu W Y, Zhao Y P, Sui Y P, Zhong Q X, Ji Y Q, Shyue J J, Jia S, Yang B, Tang P Y, Gong Q H, Zhao L C, Zhu R 2024 Nat. EnergyGoogle Scholar
[5] Zhou Y Y, Zhao Y X 2019 Energ. Environ. Sci. 12 1495Google Scholar
[6] Chen S, Wen X M, Huang S J, Huang F Z, Cheng Y B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar
[7] Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938Google Scholar
[8] Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar
[9] Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y B, Grimm R L, Pacifici D, Zeng X C, Zhou Y Y, Padture N P 2019 Nat. Commun. 10 16Google Scholar
[10] Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar
[11] Zhang X, Yu Z H, Zhang D, Tai Q D, Zhao X Z 2022 Adv. Energy Mater. 13 2201320
[12] Zhang H, Xiang W C, Zuo X J, Gu X J, Zhang S, Du Y C, Wang Z T, Liu Y L, Wu H F, Wang P J, Cui Q Y, Su H, Tian Q W, Liu S Z 2022 Angew. Chem. Int. Edit. 62 e202216634
[13] Chen H N, Yang S H 2017 Adv. Mater. 29 1603994Google Scholar
[14] Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800Google Scholar
[15] Wang K, Liu X Y, Huang R, Wu C C, Yang D, Hu X W, Jiang X F, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett. 4 1852Google Scholar
[16] Xu B, Zhu Z L, Zhang J B, Liu H B, Chueh C C, Li X S, Jen A K Y 2017 Adv. Energy Mater. 7 1700683Google Scholar
[17] Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar
[18] Gong S P, Li H Y, Chen Z Q, Shou C H, Huang M J, Yang S W 2020 ACS Appl. Mater. Interfaces 12 34882Google Scholar
[19] Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ. Environ. Sci. 13 1377Google Scholar
[20] Wu X, Qi F, Li F Z, Deng X, Li Z, Wu S F, Liu T T, Liu Y Z, Zhang J, Zhu Z L 2020 Energy Environ. Mater. 4 95
[21] Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Edit. 58 16691Google Scholar
[22] Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61Google Scholar
[23] Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196Google Scholar
[24] Wang Z T, Tian Q W, Zhang H, Xie H D, Du Y C, Liu L, Feng X L, Najar A, Ren X D, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202305815Google Scholar
[25] Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418Google Scholar
[26] Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chem. Int. Edit. 57 3787Google Scholar
[27] Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar
[28] Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R, Liao G L 2018 Nano Energy 50 201Google Scholar
[29] Han Q J, Yang S Z, Wang L, Yu F Y, Zhang C, Wu M X, Ma T L 2021 Sol. Energy 216 351Google Scholar
-
表 1 CsPbIxBr3–x不同I-Br配比下的最佳器件的具体光伏参数
Table 1. The specific photovoltaic parameters of CsPbIxBr3–x devices with different I-Br ratios.
Device VOC/V JSC/(mA·cm–2) FF/% PCE/% CsPbIBr2 1.29 7.74 50.68 5.09 CsPbI1.2Br1.8 1.27 9.47 54.63 6.57 CsPbI1.4Br1.6 1.26 10.46 55.54 7.32 CsPbI1.6Br1.4 1.25 11.99 56.91 8.53 CsPbI1.8Br1.2 1.22 12.95 63.93 10.10 CsPbI2Br 1.21 13.61 62.30 10.26 表 2 不同含量PEABr处理的器件的具体光伏参数
Table 2. Specific photovoltaic parameters of devices treated with PEABr at different concentrations.
Device Type VOC/V JSC/(mA·cm–2) FF/% PCE/% w/o-PEABr Max 1.23 13.18 62.59 10.18 Average 1.22 ± 0.02 13.22 ± 0.22 60.08 ± 2.45 9.66 ± 0.41 30-PEABr Max 1.26 14.15 65.92 11.73 Average 1.25 ± 0.02 14.01 ± 0.68 62.55 ± 1.79 10.93 ± 0.49 50-PEABr Max 1.28 15.19 64.98 12.61 Average 1.28 ± 0.02 14.71 ± 0.62 63.14 ± 1.65 11.84 ± 0.54 70-PEABr Max 1.27 14.92 63.72 12.05 Average 1.27 ± 0.02 14.24 ± 0.45 61.96 ± 1.03 11.18 ± 0.49 注: 表中的平均值是由40组器件(每个条件10组)计算得出. 表 3 有无PEABr处理的器件的Nyquist plots模拟结果
Table 3. Nyquist plot simulation results of devices with and without PEABr processing.
Device RS/Ω Rrec/Ω w/o-PEABr 68.89 6776 with-PEABr 48.53 24866 -
[1] Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M , Gratzel M 2013 Nature 499 316Google Scholar
[2] Wang Y C, Chang J W, Zhu L P, Li X D, Song C J, Fang J F 2018 Adv. Funct. Mater 28 1706317Google Scholar
[3] Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar
[4] Li Q Y, Liu H, Hou C H, Yan H M, Li S D, Chen P, Xu H Y, Yu W Y, Zhao Y P, Sui Y P, Zhong Q X, Ji Y Q, Shyue J J, Jia S, Yang B, Tang P Y, Gong Q H, Zhao L C, Zhu R 2024 Nat. EnergyGoogle Scholar
[5] Zhou Y Y, Zhao Y X 2019 Energ. Environ. Sci. 12 1495Google Scholar
[6] Chen S, Wen X M, Huang S J, Huang F Z, Cheng Y B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar
[7] Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938Google Scholar
[8] Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar
[9] Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y B, Grimm R L, Pacifici D, Zeng X C, Zhou Y Y, Padture N P 2019 Nat. Commun. 10 16Google Scholar
[10] Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar
[11] Zhang X, Yu Z H, Zhang D, Tai Q D, Zhao X Z 2022 Adv. Energy Mater. 13 2201320
[12] Zhang H, Xiang W C, Zuo X J, Gu X J, Zhang S, Du Y C, Wang Z T, Liu Y L, Wu H F, Wang P J, Cui Q Y, Su H, Tian Q W, Liu S Z 2022 Angew. Chem. Int. Edit. 62 e202216634
[13] Chen H N, Yang S H 2017 Adv. Mater. 29 1603994Google Scholar
[14] Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800Google Scholar
[15] Wang K, Liu X Y, Huang R, Wu C C, Yang D, Hu X W, Jiang X F, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett. 4 1852Google Scholar
[16] Xu B, Zhu Z L, Zhang J B, Liu H B, Chueh C C, Li X S, Jen A K Y 2017 Adv. Energy Mater. 7 1700683Google Scholar
[17] Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar
[18] Gong S P, Li H Y, Chen Z Q, Shou C H, Huang M J, Yang S W 2020 ACS Appl. Mater. Interfaces 12 34882Google Scholar
[19] Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ. Environ. Sci. 13 1377Google Scholar
[20] Wu X, Qi F, Li F Z, Deng X, Li Z, Wu S F, Liu T T, Liu Y Z, Zhang J, Zhu Z L 2020 Energy Environ. Mater. 4 95
[21] Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Edit. 58 16691Google Scholar
[22] Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61Google Scholar
[23] Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196Google Scholar
[24] Wang Z T, Tian Q W, Zhang H, Xie H D, Du Y C, Liu L, Feng X L, Najar A, Ren X D, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202305815Google Scholar
[25] Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418Google Scholar
[26] Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chem. Int. Edit. 57 3787Google Scholar
[27] Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar
[28] Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R, Liao G L 2018 Nano Energy 50 201Google Scholar
[29] Han Q J, Yang S Z, Wang L, Yu F Y, Zhang C, Wu M X, Ma T L 2021 Sol. Energy 216 351Google Scholar
计量
- 文章访问数: 780
- PDF下载量: 23
- 被引次数: 0