搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析

谢佳苗 李京阳 周佳逸 郝文乾

引用本文:
Citation:

含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析

谢佳苗, 李京阳, 周佳逸, 郝文乾
cstr: 32037.14.aps.73.20241176

Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack

Xie Jia-Miao, Li Jing-Yang, Zhou Jia-Yi, Hao Wen-Qian
cstr: 32037.14.aps.73.20241176
PDF
HTML
导出引用
  • 为了降低固体氧化物燃料电池在冷却过程中的裂纹扩展程度, 提高电池的稳定性和耐久性, 对含有预裂纹的固体氧化物燃料电池的三维模型进行有限元分析. 从工作温度、材料属性、预裂纹角度、预裂纹位置等方面出发, 以电池应力分布、裂纹扩展后的长度、最大宽度和偏转角度等作为判据, 探究各因素对预裂纹扩展行为的影响, 提出基于材料优化和结构优化的提高电池稳定性的方案. 研究结果表明, 在所选参数范围内, 为了抑制裂纹扩展程度, 电池的工作温度不应低于1023 K, 阳极的热膨胀系数应小于12.50×10–6 K–1. 此外, 当预裂纹倾斜角度为45°或预裂纹距阳极底部0.45 mm时, 裂纹扩展后的最大宽度最小, 且扩展方向最易预测, 此时电池受裂纹影响的范围最小, 稳定性最高. 该研究工作为抑制固体氧化物燃料电池的裂纹扩展, 提高燃料电池的使用寿命, 促进燃料电池的商业化进程提供了依据.
    The mechanical performance of solid oxide fuel cell is one of the main factors limiting its commercialization process. In order to reduce the degree of crack propagation in the cooling process and improve the stability and durability of the cell, the finite element analysis is conducted on a three-dimensional model of solid oxide fuel cell containing pre-crack. Utilizing the extended finite element method (XFEM) and fracture theory, and considering the stress distribution, length and maximum width after crack propagation and deflection angle of crack as criteria, this paper investigates the influence of various parameters, including working temperature, material properties, pre-crack angle, and pre-crack location, on pre-crack propagation behavior and proposes a solution based on material optimization and structural optimization to improve the stability of the cell. A pre-crack is set at the left boundary of the anode to analyze the influence of different operating conditions on the propagation of anode cracks in the cell. The correctness of finite element simulation is verified by comparing the simulation results with theoretical results of crack stress intensity factors in the same model. From the comprehensive analysis of the thermal stress of the cell, the crack length and maximum width after pre-crack propagation, and the two deflection angles of crack propagation, it can be seen that within the selected parameters, in order to ensure the stability of the cell and inhibit the degree of crack propagation, the operating temperature of the cell should not be lower than 1023 K, and the thermal expansion coefficient of anode should be less than 12.50×10–6 K–1. In addition, when the pre-crack angle is 45° or 0.45 mm away from the bottom of anode, the maximum width after crack propagation is the smallest, and the propagation path is the most predictable. In this case, the cell is affected by the smallest crack range and the highest stability. This research provides a guidance for suppressing crack propagation in solid oxide fuel cell, improving the lifetime and promoting the commercialization process of fuel cell.
      通信作者: 郝文乾, wqhao@nuc.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 12102399, 12202407)和山西省基础研究计划(批准号: 20210302124263)资助的课题.
      Corresponding author: Hao Wen-Qian, wqhao@nuc.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 12102399, 12202407) and the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302124263).
    [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells. (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55Google Scholar

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Shao Q, Fernández-González R, Ruiz-Morales J, et al. 2015 Int. J. Hydrogen Energy 40 16509Google Scholar

    [8]

    Shao Q, Bouhala L, Fiorelli D, Fahs M, Younes A, Núñez P, Belouettar S, Makradi A 2016 Int. J. Solids Struct. 78–79 189Google Scholar

    [9]

    Joulaee N, Makradi A, Ahzi S, Khaleel M A, Koeppel B K 2009 Int. J. Mech. Mater. Des. 5 217Google Scholar

    [10]

    Nguyen B N, Koeppel B J, Ahzi S, Khaleel M A, Singh P 2006 J. Am. Ceram. Soc. 89 1358Google Scholar

    [11]

    Li Q Q, Xue D X, Feng C Y, Zhang X W, Li G J 2022 J. Electrochem. Soc. 169 073507Google Scholar

    [12]

    Bouhala L, Belouettar S, Makradi A, Rémond Y 2010 Mater. Des. 31 1033Google Scholar

    [13]

    Pitakthapanaphong S, Busso E P 2005 Model Simul. Mater. Sci. Eng. 13 531Google Scholar

    [14]

    Kim S J, Choi M B, Park M, Kim H, Son J W, Lee J H, Kim B K, Lee H, Kim S G, Yoon K 2017 J. Power Sources 360 284Google Scholar

    [15]

    李录贤, 王铁军 2005 力学进展 35 5Google Scholar

    Li L X, Wang T J 2005 Adv. Mech. 35 5Google Scholar

    [16]

    王自强, 陈少华 2009 高等断裂力学(北京: 科学技术出版社) 第87页

    Wang Z Q, Chen S H 2009 Advanced Fracture Mechanics (Beijing: Science and Technology Press) p87

    [17]

    Ergodan F, Sih G C 1963 J. Basic Sci. Eng. 85 520

    [18]

    Chang K J 1981 Eng. Fract. Mech. 14 107Google Scholar

    [19]

    Hussain M A, Pu S L, Underwood J H 1974 Strain Energy Release Rate for a Crack under Combined Mode I and Mode II (West Conshohocken: ASTM International) p35

    [20]

    Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H 1998 J. Electrochem. Soc. 145 1374Google Scholar

    [21]

    Sameshima S, Ichikawa T, Kawaminami M, Hirata Y 1999 Mater. Chem. Phys. 61 31Google Scholar

    [22]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9249Google Scholar

    [23]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9269Google Scholar

    [24]

    Petruzzi L, Cocchi S, Fineschi F 2003 J. Power Sources 118 96Google Scholar

    [25]

    Nakajo A, Kuebler J, Faes A, et al. 2012 Ceram. Int. 38 3907Google Scholar

    [26]

    Chatterjee A, Sharma G, Varshney J, Neogy S, Singh R N 2017 Mater. Sci. Eng. 684 626Google Scholar

    [27]

    Nakajo A, Stiller C, Harkegard G, Bolland O 2006 J. Power Sources 158 287Google Scholar

    [28]

    Tada H, Paris P C, Irwin G R 1973 The Stress Analysis of Cracks Handbook (New York: ASME Press) p30

    [29]

    朱传锐 2010 硕士学位论文 (郑州: 河南理工大学)

    Zhu C Y 2010 M. S. Thesis (Zhengzhou: Henan Polytechnic University

    [30]

    陈浩 2022 博士学位论文 (兰州: 兰州大学)

    Chen H 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Junya K, Hirohisa S, Katsuhiro K, Toshio N 2004 J. Alloys Compd. 365 253Google Scholar

    [32]

    Pihlatie M, Kaiser A, Mogensen M 2009 J. Eur. Ceram. Soc. 29 1657Google Scholar

    [33]

    Biswas S, Nithyanantham T, Saraswathi N, Bandopadhyay S 2009 J. Mater. Sci. 44 778Google Scholar

    [34]

    Chen T, Yao C, Hu L, Huang C, Li X 2019 Thin Wall. Struct 143 143106196

    [35]

    El-Emam M H, Salim A H, Sallam M E H 2016 J. Struct. Eng. 143 04016229

  • 图 1  含预裂纹的平板式SOFC几何模型示意图

    Fig. 1.  Schematic diagram of the geometric model of planar SOFC with pre-crack.

    图 2  应力强度因子随倾斜角变化的数值计算结果与理论解析解的对比图 (a) 无限大平板几何模型和边界条件; (b) 应力强度因子对比曲线

    Fig. 2.  The comparison between the numerical result and theoretical analytical solution of stress intensity factor with the inclination angle : (a) The infinite plate geometric model and boundary conditions; (b) stress-intensity factor contrast curve.

    图 3  倾斜裂纹扩展路径数值模拟图 (a) 正方形板几何模型和边界条件; (b) 裂纹扩展数值模拟图

    Fig. 3.  Numerical simulation diagram of inclined crack propagation path: (a) Geometric model and boundary conditions of a square plate; (b) numerical simulation diagram of crack propagation.

    图 4  不同工作温度下SOFC阳极预裂纹扩展后的应力云图(Z-方向视图) (a) 923 K; (b) 973 K; (c) 1023 K; (d) 1073 K

    Fig. 4.  Stress nephogram of SOFC anode pre-crack propagation at different operating temperatures (Z-direction view): (a) 923 K; (b) 973 K; (c) 1023 K; (d) 1073 K

    图 5  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随电池工作温度的变化情况

    Fig. 5.  The change of the crack length and maximum crack width with the SOFC operating temperature after anode pre-crack propagation.

    图 6  阳极预裂纹扩展后的裂纹偏转角度随电池工作温度的变化情况

    Fig. 6.  The variation of crack deflection angle after anode pre-crack propagation with SOFC operating temperature.

    图 7  不同热膨胀系数下SOFC阳极预裂纹扩展后的应力云图(Z-方向视图) (a) 12.00×10–6 K–1; (b) 12.41×10–6 K–1; (c) 12.50×10–6 K–1; (d) 13.00×10–6 K–1

    Fig. 7.  Stress nephogram of SOFC anode pre-crack propagation under different thermal expansion coefficients (Z-direction view): (a) 12.00×10–6 K–1; (b) 12.41×10–6 K–1; (c) 12.50×10–6 K–1; (d) 13.00×10–6 K–1

    图 8  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随阳极热膨胀系数的变化情况

    Fig. 8.  The change of crack length and the maximum crack width with the thermal expansion coefficient of anode after the anode pre-crack propagation.

    图 9  阳极预裂纹扩展后的裂纹偏转角度随阳极热膨胀系数的变化情况

    Fig. 9.  Variation of crack deflection angle with thermal expansion coefficient of anode after anode pre-crack propagation.

    图 10  预裂纹倾斜角度示意图(Z-方向视图) (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°

    Fig. 10.  Schematic diagram of pre-crack inclination angle (Z-direction view): (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°.

    图 11  不同预裂纹倾斜角度下SOFC阳极预裂纹扩展的应力云图(Z-方向视图) (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°

    Fig. 11.  Stress nephogram of SOFC anode pre-crack propagation under different pre-crack inclination angles (Z-direction view): (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°

    图 12  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随预裂纹倾斜角度的变化

    Fig. 12.  Variation of crack length and maximum crack width after anode pre-crack propagation with the inclination angle of the pre-crack.

    图 13  阳极预裂纹扩展后的裂纹偏转角度随预裂纹倾斜角度的变化

    Fig. 13.  Variation of crack deflection angle with pre-crack inclination angle after anode pre-crack propagation.

    图 14  不同预裂纹位置下SOFC阳极预裂纹扩展的应力云图(Z-方向视图) (a) ha = 0.30 mm; (b) ha = 0.35 mm; (c) ha = 0.40 mm; (d) ha = 0.45 mm

    Fig. 14.  Stress nephogram of SOFC anode pre-crack propagation at different pre-crack locations (Z-direction view): (a) ha = 0.30 mm; (b) ha = 0.35 mm; (c) ha = 0.40 mm; (d) ha = 0.45 mm.

    图 15  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随预裂纹位置的变化

    Fig. 15.  Variation of crack length and maximum crack width with the pre-crack position after anode pre-crack propagation.

    图 16  阳极预裂纹扩展后的裂纹偏转角度随预裂纹位置的变化

    Fig. 16.  Variation of crack deflection angle with pre-crack position after anode pre-crack propagation.

    表 1  SOFC电极和电解质的材料属性[2027]

    Table 1.  Material properties of SOFC electrodes and electrolyte[2027].

    材料属性 阳极
    Ni-YSZ
    电解质
    YSZ
    阴极
    LSM
    弹性模量
    E/GPa
    298 K 72.5 196.3 41.3
    1073 K 58.1 148.6 48.3
    泊松比 μ 298 K 0.36 0.31 0.33
    1073 K 0.36 0.31 0.33
    热膨胀系数
    α/(10–6 K–1)
    298 K 12.41 10.0 9.8
    1073 K 12.60 10.5 11.8
    下载: 导出CSV

    表 2  裂纹开裂后左端裂尖的应力强度因子和开裂角

    Table 2.  Stress intensity factor and cracking angle at the left crack tip after crack propagation.

    步数 KI/(MPa·$ \sqrt {\text{m}} $) KII/(MPa·$ \sqrt {\text{m}} $) θ/(º)
    前人结果[29] 本文结果 误差/% 前人结果[29] 本文结果 误差/% 前人结果[29] 本文结果 误差/%
    初始 1.7394 1.7380 0.08 1.000 1.002 0.20 –0.7528 –0.7530 0.03
    1 2.1129 2.1131 0.02 –0.6982 –0.6985 0.04 0.5442 0.5445 0.05
    2 4.2294 4.2294 0 0.7843 0.7845 0.03 –0.5365 –0.5365 0
    3 4.2843 4.2845 0.07 –0.6983 –0.6988 0.07 0.4596 0.4601 0.10
    4 4.2254 4.2254 0 0.7370 0.7374 0.05 –0.4498 –0.4498 0
    5 4.2779 4.2784 0.01 –0.5585 –0.5590 0.09 0.3123 0.3123 0
    6 4.2528 4.2533 0.01 0.4764 0.4768 0.08 –0.2526 –0.2527 0.04
    下载: 导出CSV

    表 3  裂纹开裂后右端裂尖的应力强度因子和开裂角

    Table 3.  Stress intensity factor and crack angle of right end crack tip after crack propagation.

    步数KI/(MPa·$ \sqrt {\text{m}} $)KII/(MPa·$ \sqrt {\text{m}} $)θ/(º)
    前人结果[29]本文结果误差
    /%
    前人结果[29]本文结果误差
    /%
    前人结果[29]本文结果误差
    /%
    初始1.78031.78050.010.98570.98570–0.7393–0.73930
    12.11682.11680–0.7279–0.72820.040.55930.55880.08
    22.47312.47360.020.79630.79630–0.5344–0.53400.07
    32.67602.67570.01–0.8094–0.80990.060.51100.51100
    42.98022.98050.010.88560.88560–0.50440.50480.08
    53.30003.30000–0.90700.90730.030.47590.47590
    63.67133.67090.010.92290.92330.040.44410.44350.13
    下载: 导出CSV

    表 4  不同方案的阳极热膨胀系数

    Table 4.  The thermal expansion coefficient of anode in different schemes.

    参 数298 K1073 K
    阳极热膨胀系数/(10–6 K–1)12.0012.60
    12.4112.60
    12.5013.13
    13.0013.65
    下载: 导出CSV
  • [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells. (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55Google Scholar

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Shao Q, Fernández-González R, Ruiz-Morales J, et al. 2015 Int. J. Hydrogen Energy 40 16509Google Scholar

    [8]

    Shao Q, Bouhala L, Fiorelli D, Fahs M, Younes A, Núñez P, Belouettar S, Makradi A 2016 Int. J. Solids Struct. 78–79 189Google Scholar

    [9]

    Joulaee N, Makradi A, Ahzi S, Khaleel M A, Koeppel B K 2009 Int. J. Mech. Mater. Des. 5 217Google Scholar

    [10]

    Nguyen B N, Koeppel B J, Ahzi S, Khaleel M A, Singh P 2006 J. Am. Ceram. Soc. 89 1358Google Scholar

    [11]

    Li Q Q, Xue D X, Feng C Y, Zhang X W, Li G J 2022 J. Electrochem. Soc. 169 073507Google Scholar

    [12]

    Bouhala L, Belouettar S, Makradi A, Rémond Y 2010 Mater. Des. 31 1033Google Scholar

    [13]

    Pitakthapanaphong S, Busso E P 2005 Model Simul. Mater. Sci. Eng. 13 531Google Scholar

    [14]

    Kim S J, Choi M B, Park M, Kim H, Son J W, Lee J H, Kim B K, Lee H, Kim S G, Yoon K 2017 J. Power Sources 360 284Google Scholar

    [15]

    李录贤, 王铁军 2005 力学进展 35 5Google Scholar

    Li L X, Wang T J 2005 Adv. Mech. 35 5Google Scholar

    [16]

    王自强, 陈少华 2009 高等断裂力学(北京: 科学技术出版社) 第87页

    Wang Z Q, Chen S H 2009 Advanced Fracture Mechanics (Beijing: Science and Technology Press) p87

    [17]

    Ergodan F, Sih G C 1963 J. Basic Sci. Eng. 85 520

    [18]

    Chang K J 1981 Eng. Fract. Mech. 14 107Google Scholar

    [19]

    Hussain M A, Pu S L, Underwood J H 1974 Strain Energy Release Rate for a Crack under Combined Mode I and Mode II (West Conshohocken: ASTM International) p35

    [20]

    Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H 1998 J. Electrochem. Soc. 145 1374Google Scholar

    [21]

    Sameshima S, Ichikawa T, Kawaminami M, Hirata Y 1999 Mater. Chem. Phys. 61 31Google Scholar

    [22]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9249Google Scholar

    [23]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9269Google Scholar

    [24]

    Petruzzi L, Cocchi S, Fineschi F 2003 J. Power Sources 118 96Google Scholar

    [25]

    Nakajo A, Kuebler J, Faes A, et al. 2012 Ceram. Int. 38 3907Google Scholar

    [26]

    Chatterjee A, Sharma G, Varshney J, Neogy S, Singh R N 2017 Mater. Sci. Eng. 684 626Google Scholar

    [27]

    Nakajo A, Stiller C, Harkegard G, Bolland O 2006 J. Power Sources 158 287Google Scholar

    [28]

    Tada H, Paris P C, Irwin G R 1973 The Stress Analysis of Cracks Handbook (New York: ASME Press) p30

    [29]

    朱传锐 2010 硕士学位论文 (郑州: 河南理工大学)

    Zhu C Y 2010 M. S. Thesis (Zhengzhou: Henan Polytechnic University

    [30]

    陈浩 2022 博士学位论文 (兰州: 兰州大学)

    Chen H 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Junya K, Hirohisa S, Katsuhiro K, Toshio N 2004 J. Alloys Compd. 365 253Google Scholar

    [32]

    Pihlatie M, Kaiser A, Mogensen M 2009 J. Eur. Ceram. Soc. 29 1657Google Scholar

    [33]

    Biswas S, Nithyanantham T, Saraswathi N, Bandopadhyay S 2009 J. Mater. Sci. 44 778Google Scholar

    [34]

    Chen T, Yao C, Hu L, Huang C, Li X 2019 Thin Wall. Struct 143 143106196

    [35]

    El-Emam M H, Salim A H, Sallam M E H 2016 J. Struct. Eng. 143 04016229

  • [1] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 黄坤, 王腾飞, 姚激. 单层MoS2的热弹耦合非线性板模型. 物理学报, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [4] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [6] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [7] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [8] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响. 物理学报, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [9] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响. 物理学报, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [10] 郭刘洋, 陈铮, 龙建, 杨涛. 晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响. 物理学报, 2015, 64(17): 178102. doi: 10.7498/aps.64.178102
    [11] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征. 物理学报, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [12] 董刚, 刘荡, 石涛, 杨银堂. 多个硅通孔引起的热应力对迁移率和阻止区的影响. 物理学报, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [13] 魏智, 金光勇, 彭博, 张喜和, 谭勇. 毫秒脉冲激光辐照硅基PIN的温度场应力场数值分析. 物理学报, 2014, 63(19): 194205. doi: 10.7498/aps.63.194205
    [14] 徐军, 肖晓春, 潘一山, 丁鑫. 基于J积分的颗粒煤岩单轴压缩下裂纹扩展研究. 物理学报, 2014, 63(21): 214602. doi: 10.7498/aps.63.214602
    [15] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究. 物理学报, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [16] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展. 物理学报, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [17] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [18] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究. 物理学报, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [19] 邢修三. 微裂纹演化的随机模型. 物理学报, 1981, 30(12): 1615-1623. doi: 10.7498/aps.30.1615
    [20] 用电阻法确定裂纹扩展的开裂点. 物理学报, 1976, 25(4): 344-351. doi: 10.7498/aps.25.344
计量
  • 文章访问数:  682
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-09-26
  • 上网日期:  2024-10-29
  • 刊出日期:  2024-12-05

/

返回文章
返回