搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多个硅通孔引起的热应力对迁移率和阻止区的影响

董刚 刘荡 石涛 杨银堂

引用本文:
Citation:

多个硅通孔引起的热应力对迁移率和阻止区的影响

董刚, 刘荡, 石涛, 杨银堂

Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone

Dong Gang, Liu Dang, Shi Tao, Yang Yin-Tang
PDF
导出引用
  • 本文主要讨论了多个硅通孔引起的热应力对迁移率和阻止区的影响, 得到了器件沟道沿[100]方向时, 硅通孔之间的角度和间距对电子迁移率和阻止区的影响. 设定两种阻止区区域, 即迁移率变化分别为5%和10%的区域, 且主要考虑相邻TSV之间的区域. 仿真结果表明: 当硅通孔和X轴所成角度为π/4时, 电子迁移率变化和阻止区区域最小, 但是可布置器件区域不规则, 不易于布局. 随着间距的增加, 电子迁移率变化和阻止区区域逐渐增大, 趋向于单个TSV的情况; 当角度为0 时, 电子迁移率变化和阻止区区域变大, 可布置器件区域为硅通孔围成的中心小区域上, 形状比较规则, 便于布局. 而且随着间距的增加, 电子迁移率变化和阻止区区域越来越小, 趋向于单个硅通孔的情况.
    Effects of thermal stress induced by multiple through silicon vias (TSVs) on mobility and keep out zone (KOZ) are mainly discussed in this paper. It is found that the angle and pitch between TSVs have a great effect on the carrier mobility and KOZ. In this paper, the device channel direction is set along [100]. And two types of KOZ are presented, namely the variations of electron mobility are 5% and 10% respectively. As for the two TSVs, their KOZ sizes change significantly with the angles between TSVs which change from zero to π/4, and the area of a KOZ is the minimum when the angle is π/4. But the zone for device placement is irregular, which is difficult for agreement. The area of a KOZ is the maximum when the angle is zero, and it is easy to make arrangement as the space for device distribution is regular. Based on these analyses, the effects of pitch between TSVs are presented. When the angle is zero, the area of KOZ decreases as the pitch increases and tends to be the same as that of a single TSV. For example, the KOZ, in which the variations of electron mobility are 5% and 10%, will reduce to 8.4 μm and 5.1 μm as the pitch increases to 20 μm, which is close to that of the single TSV. But when the angle is π/4, the KOZ with an electron mobility 5% increases from 5.2 to 6.4 μm as the pitch increases and tends to be the same as that of a single TSV at last. The KOZ with an electron mobility 10% will increase from 4.2 to 4.5 μm. In addition, the above analyses can be extended to the KOE of four TSVs, a more representative pattern. And two kinds of TSV displacement style including “square” and "diamond" TSV patterns are also discussed, the impact of pitch for these two patterns are also given in this paper. For the “square” TSV pattern, the KOZ decreases as the pitch increases. Under this condition, the devices can only be placed in a small square region surrounded by TSVs, but the region is regular, which is beneficial for device arranging. While for the "diamond" TSV pattern, the KOZ increases as the pitch increases. Under this condition, the area for device placement is larger than the “square” TSV pattern, but the region is irregular as it is divided into long narrow parts, which is hard for device placement.
      通信作者: 董刚, gdong@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61334003)资助的课题.
      Corresponding author: Dong Gang, gdong@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61334003).
    [1]

    Sai M P D, Shang Y H, Tan C S, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1734

    [2]

    Dong G, Yang Y, Chai C C, Yang Y T 2010 Chin. Phys. B 19 110202

    [3]

    Lee Y J, Lim S K 2011 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 30 1635

    [4]

    Qian L B, Zhu Z M, Xia Y S, Ding R X, Yang Y T 2014 Chin. Phys. B 23 038402

    [5]

    Wang F, Zhu Z, Yang Y, Liu X, Ding R 2013 IEICE Electron. Express 10 20130666

    [6]

    Qian L B, Zhu Z M, Yang Y T 2012 Acta Phys. Sin. 61 068001 (in Chinese) [钱利波, 朱樟明, 杨银堂 2012 物理学报 61 068001]

    [7]

    Weerasekera R, Li H Y, Yi L W, Sanming H, Shi J, Minkyu J, Teo K H 2013 IEEE Electron Device Lett. 34 18

    [8]

    Che F X, Li H Y, Zhang X W, Gao S, Teo K H 2012 IEEE Trans. Compon. Packag. Manufact. Tech. 2 944

    [9]

    Jung M, Mitra J, Pan D Z, Lim S K 2011 IEEE Design Automation Conference New York, USA, June 5-9, 2011 p188

    [10]

    Udupa A, Subbarayan G, Koh C K 2012 Microelectron. Reliab. 53 63

    [11]

    Ryu S K, Lu K H, Zhang X, Im J H, Ho P S, Huang R 2011 IEEE Trans. Device Mater. Rel. 11 35

    [12]

    Tsai M Y, Huang P S, Huang C Y, Jao H, Huang B, Wu B, Lin Y Y, Liao W, Huang L, Shih S, Lin J P 2013 IEEE Trans. Electron Devices 60 2331

    [13]

    Selvanayagam C, Zhang X W, Rajoo R, Pinjala D 2011 IEEE Trans. Compon. Packag. Manufact. Tech. 1 1328

    [14]

    Marella S K, Kumar S K, Sapatnekar S S 2012 IEEE ACM Int Conf Comput Aided Des (ICCAD), Nov 5-8, 2012 p317

    [15]

    Chan Y S, Zhang X W 2014 IEEE Trans. Compon. Packag. Manufact. Tech. 4 1010

    [16]

    Kuo C W, Tsai H Y 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System San Diego, CA, May30-June1, 2012 p202

    [17]

    Lee H M, Liu E X, Samudra G S, Li E P 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium Taipei, China, December 9-11, 2012 p189

    [18]

    Zou Q, Zhang T, Kursun E, Xie Y 2013 Date conference and exhibition Grenoble, France, March 18-22, 2013 p1255

    [19]

    Yang J S, Athikulwongse K, Lee Y J, Lim S K, Pan D Z 2010 47th ACM/IEEE Design Automation Conference(DAC), June 13-18, 2010 p803

    [20]

    Mercha A, Van D P G, Moroz V, Wolf D 2010 IEEE International Electron Devices Meeting(IEDM), San Francisco, CA, Dec 6-8, 2010 p2.2.1

    [21]

    Chen C F 2014 IEEE 64th Electronic Components and Technology Conference(ECTC) Orlando, FL, May 27-30, 2014 p2020

    [22]

    Van der P G, Limaye P, Mercha A, Oprins H, Torregiani C, Thijs S, Linten D, Stucchi M, Guruprasad K, Velenis D, Shinichi D, Cherman V, Vandevelde B, Simons V, De W I, Labie R, Perry D, Bronckers S, Minas N, Cupac M, Ruythooren W, Van O J, Phommahaxay A, de Potter de ten Broeck M, Opdebeeck A, Rakowski M, De W B, Dehan M, Nelis M, Agarwal R, Dehaene W, Travaly Y, Marchal P, Beyne E 2010 Dig Tech Pap IEEE Int Solid State Circuits Conf (ISSCC) San Francisco, CA, Feb 1-7, 2010 p148

    [23]

    Sumi, Chikayoshi 2006 IEEE Trans Ultrason Ferro electr Freq Control 53 2416

    [24]

    Li Y, Chang W Y, Zuo K W, Wang J, Yu D, Boning D 2012 13th International Symposium on Quality Electronic Design, Santa Clara, CA, March 19-21, 2012 p216

    [25]

    Li Y, Pan D Z 2013 50th IEEE Design Automation Conference, Austin, USA, May 29-June 7, 2013 p1

    [26]

    Jung M, Pan D M, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1694

    [27]

    Lim D F, Leong K C 2012 IEEE International 3D Systems Intergration Conference, Osaka, Jan 31-Feb 2, 2012 p1

    [28]

    Ryu S K, Lu K H, Jiang T F, Im J H, Huang H, Ho P S 2012 IEEE Trans. Device Mater. Reliab. 12 255

  • [1]

    Sai M P D, Shang Y H, Tan C S, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1734

    [2]

    Dong G, Yang Y, Chai C C, Yang Y T 2010 Chin. Phys. B 19 110202

    [3]

    Lee Y J, Lim S K 2011 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 30 1635

    [4]

    Qian L B, Zhu Z M, Xia Y S, Ding R X, Yang Y T 2014 Chin. Phys. B 23 038402

    [5]

    Wang F, Zhu Z, Yang Y, Liu X, Ding R 2013 IEICE Electron. Express 10 20130666

    [6]

    Qian L B, Zhu Z M, Yang Y T 2012 Acta Phys. Sin. 61 068001 (in Chinese) [钱利波, 朱樟明, 杨银堂 2012 物理学报 61 068001]

    [7]

    Weerasekera R, Li H Y, Yi L W, Sanming H, Shi J, Minkyu J, Teo K H 2013 IEEE Electron Device Lett. 34 18

    [8]

    Che F X, Li H Y, Zhang X W, Gao S, Teo K H 2012 IEEE Trans. Compon. Packag. Manufact. Tech. 2 944

    [9]

    Jung M, Mitra J, Pan D Z, Lim S K 2011 IEEE Design Automation Conference New York, USA, June 5-9, 2011 p188

    [10]

    Udupa A, Subbarayan G, Koh C K 2012 Microelectron. Reliab. 53 63

    [11]

    Ryu S K, Lu K H, Zhang X, Im J H, Ho P S, Huang R 2011 IEEE Trans. Device Mater. Rel. 11 35

    [12]

    Tsai M Y, Huang P S, Huang C Y, Jao H, Huang B, Wu B, Lin Y Y, Liao W, Huang L, Shih S, Lin J P 2013 IEEE Trans. Electron Devices 60 2331

    [13]

    Selvanayagam C, Zhang X W, Rajoo R, Pinjala D 2011 IEEE Trans. Compon. Packag. Manufact. Tech. 1 1328

    [14]

    Marella S K, Kumar S K, Sapatnekar S S 2012 IEEE ACM Int Conf Comput Aided Des (ICCAD), Nov 5-8, 2012 p317

    [15]

    Chan Y S, Zhang X W 2014 IEEE Trans. Compon. Packag. Manufact. Tech. 4 1010

    [16]

    Kuo C W, Tsai H Y 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System San Diego, CA, May30-June1, 2012 p202

    [17]

    Lee H M, Liu E X, Samudra G S, Li E P 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium Taipei, China, December 9-11, 2012 p189

    [18]

    Zou Q, Zhang T, Kursun E, Xie Y 2013 Date conference and exhibition Grenoble, France, March 18-22, 2013 p1255

    [19]

    Yang J S, Athikulwongse K, Lee Y J, Lim S K, Pan D Z 2010 47th ACM/IEEE Design Automation Conference(DAC), June 13-18, 2010 p803

    [20]

    Mercha A, Van D P G, Moroz V, Wolf D 2010 IEEE International Electron Devices Meeting(IEDM), San Francisco, CA, Dec 6-8, 2010 p2.2.1

    [21]

    Chen C F 2014 IEEE 64th Electronic Components and Technology Conference(ECTC) Orlando, FL, May 27-30, 2014 p2020

    [22]

    Van der P G, Limaye P, Mercha A, Oprins H, Torregiani C, Thijs S, Linten D, Stucchi M, Guruprasad K, Velenis D, Shinichi D, Cherman V, Vandevelde B, Simons V, De W I, Labie R, Perry D, Bronckers S, Minas N, Cupac M, Ruythooren W, Van O J, Phommahaxay A, de Potter de ten Broeck M, Opdebeeck A, Rakowski M, De W B, Dehan M, Nelis M, Agarwal R, Dehaene W, Travaly Y, Marchal P, Beyne E 2010 Dig Tech Pap IEEE Int Solid State Circuits Conf (ISSCC) San Francisco, CA, Feb 1-7, 2010 p148

    [23]

    Sumi, Chikayoshi 2006 IEEE Trans Ultrason Ferro electr Freq Control 53 2416

    [24]

    Li Y, Chang W Y, Zuo K W, Wang J, Yu D, Boning D 2012 13th International Symposium on Quality Electronic Design, Santa Clara, CA, March 19-21, 2012 p216

    [25]

    Li Y, Pan D Z 2013 50th IEEE Design Automation Conference, Austin, USA, May 29-June 7, 2013 p1

    [26]

    Jung M, Pan D M, Lim S K 2013 IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 32 1694

    [27]

    Lim D F, Leong K C 2012 IEEE International 3D Systems Intergration Conference, Osaka, Jan 31-Feb 2, 2012 p1

    [28]

    Ryu S K, Lu K H, Jiang T F, Im J H, Huang H, Ho P S 2012 IEEE Trans. Device Mater. Reliab. 12 255

  • [1] 黄坤, 王腾飞, 姚激. 单层MoS2的热弹耦合非线性板模型. 物理学报, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [2] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [3] 董刚, 武文珊, 杨银堂. 三维集成电路堆叠硅通孔动态功耗优化. 物理学报, 2015, 64(2): 026601. doi: 10.7498/aps.64.026601
    [4] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [5] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [6] 魏智, 金光勇, 彭博, 张喜和, 谭勇. 毫秒脉冲激光辐照硅基PIN的温度场应力场数值分析. 物理学报, 2014, 63(19): 194205. doi: 10.7498/aps.63.194205
    [7] 于遥, 张晶思, 陈黛黛, 郭睿倩, 谷至华. PECVD分层结构对提高氢化非晶硅TFT迁移率的影响. 物理学报, 2013, 62(13): 138501. doi: 10.7498/aps.62.138501
    [8] 钱利波, 朱樟明, 杨银堂. 一种考虑硅通孔电阻-电容效应的三维互连线模型. 物理学报, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [9] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究. 物理学报, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [10] 朱樟明, 左平, 杨银堂. 考虑硅通孔的三维集成电路热传输解析模型. 物理学报, 2011, 60(11): 118001. doi: 10.7498/aps.60.118001
    [11] 岑兆丰, 李晓彤. 热应力双折射介质中的光传输研究. 物理学报, 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [12] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [13] 吴振宇, 杨银堂, 柴常春, 李跃进, 汪家友, 刘 彬. 通孔尺寸对铜互连应力迁移失效的影响. 物理学报, 2008, 57(6): 3730-3734. doi: 10.7498/aps.57.3730
    [14] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究. 物理学报, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [15] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [16] 黄靖云, 叶志镇, 阙端麟. Si1-xGex/Si异质结构中热应力对临界厚度的影响. 物理学报, 1997, 46(10): 2010-2014. doi: 10.7498/aps.46.2010
    [17] 顾绍庭, 张国轩, 黄国松. 玻璃板条激光器的热应力. 物理学报, 1991, 40(3): 399-406. doi: 10.7498/aps.40.399
    [18] 周烽, 张国轩, 黄国松, 王之江. 圆筒激光器热应力分析. 物理学报, 1989, 38(2): 247-255. doi: 10.7498/aps.38.247
    [19] 周炳林, 陈正秀. 关于GaAs的低迁移率问题. 物理学报, 1985, 34(4): 537-541. doi: 10.7498/aps.34.537
    [20] 涂相征. 热应力作用降低LPE层中的位错. 物理学报, 1983, 32(3): 315-324. doi: 10.7498/aps.32.315
计量
  • 文章访问数:  5207
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-15
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-09-05

/

返回文章
返回