搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响

徐晗 张璐

引用本文:
Citation:

空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响

徐晗, 张璐

Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells

Xu Han, Zhang Lu
PDF
HTML
导出引用
  • 纳米复合电极是提高中低温固体氧化物燃料电池(solid oxide fuel cell, SOFC)性能的新型前沿技术, 其内部三相界面(three phase boundary, TPB)处空间电荷层(space charge layer, SCL)效应凸显, 显著影响氧空位传输能力, 是其性能优异的重要原因之一. 现有研究广泛采用Poisson-Boltzmann方程模拟SCL效应, 受限于载流子电化学平衡假设(导体净电流为零), 难以准确地揭示SOFC运行条件下(净电流不为零) SCL效应的影响规律. 针对SOFC模式电极, 本文耦合Poisson方程与载流子质量守恒方程, 建立了运行条件下考虑SCL效应的氧空位传输数理模型及数值模拟方法. 模拟研究表明, SCL效应导致TPB附近产生明显的氧空位浓度梯度, 从而产生显著的扩散电流, 其数值甚至高于电势梯度驱动的迁移电流. 采用SCL电阻表征SCL效应对氧空位传输过程的影响, 发现随着无量纲Debye长度与无量纲电势的增大, SCL电阻呈现减小的变化趋势; 增大无量纲平均电流密度, SCL电阻逐渐增大. 本文研究工作可为通过科学设计纳米复合电极以提高中低温SOFC性能提供理论依据.
    The nanocomposite electrode is a promising technology to improve the electrochemical performance of intermediate/low temperature solid oxide fuel cells (SOFCs). Within the nanocomposite electrode, the space charge layer (SCL) effect is likely to alternate the oxygen vacancy transport adjacent to the three phase boundaries (TPBs), which is one of the key factors to improve the electrochemical performance of the electrodes. Existing studies usually adopt Poisson-Boltzmann (PB) equation to predict the SCL effect, in which all the charge carriers are assumed to be in the electrochemical equilibrium state and the net current of the conductor is nearly zero. Apparently, the PB equation is incapable of predicting the SCL effects under typical SOFC operating conditions, since the net current is obviously not zero. In this paper, based on the patterned electrode, we develop a numerical method via coupling the Poisson equation with the mass conservation equation of charge carriers for the oxygen vacancy transport with considering the SCL effect under SOFC operating conditions. Our results show that an obvious gradient is observed in the oxygen vacancy concentration near the TPBs due to the SCL effect, which leads to a remarkable diffusion current that is even larger than the migration current driven by the potential gradient. The SCL resistance is computed to quantitatively characterize the influence of the SCL effect on the oxygen vacancy transport. The SCL resistance shows a decreasing tendency with the increasing of the dimensionless Debye length and dimensionless potential, but it increases with the increasing of the dimensionless average current density. These results and the numerical method can be helpful in improving the performance of intermediate/low temperature SOFCs via rationally designing robust nanocomposite electrodes.
      通信作者: 徐晗, xuhanxh@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51606151)和中国博士后科学基金(批准号: 2020M673392)资助的课题
      Corresponding author: Xu Han, xuhanxh@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51606151) and the China Postdoctoral Science Foundation (Grant No. 2020M673392)
    [1]

    Wachsman E D, Lee K T 2011 Science 334 935Google Scholar

    [2]

    Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A 2016 Energy Environ. Sci. 9 1602Google Scholar

    [3]

    Tong X, Mebane D S, De Souza R A 2020 J. Am. Ceram. Soc. 103 5Google Scholar

    [4]

    Zhao C, Li Y, Zhang W, Zheng Y, Lou X, Yu B, Chen J, Chen Y, Liu M, Wang J 2020 Energy Environ. Sci. 13 53Google Scholar

    [5]

    Lynch M E, Yang L, Qin W, Choi J, Liu M, Blinn K, Liu M 2011 Energy Environ. Sci. 4 2249Google Scholar

    [6]

    Zheng Y, Zhao C H, Li Y F, Zhang W Q, Wu T, Wang Z C, Li Z P, Chen J, Wang J C, Yu B, Zhang J J 2020 Nano Energy 78 105236Google Scholar

    [7]

    Uthayakumar A, Pandiyan A, Mathiyalagan S, Keshri A K, Moorthy S B K 2020 J. Phys. Chem. C 124 5591Google Scholar

    [8]

    Uthayakumar A, Pandiyan A, Krishna Moorthy S B 2018 Int. J. Hydrogen Energy 43 23488Google Scholar

    [9]

    Shirpour M, Merkle R, Lin C T, Maier J 2012 Phys. Chem. Chem. Phys. 14 730Google Scholar

    [10]

    Iguchi F, Chen C, Yugami H, Kim S 2011 J. Mater. Chem. 21 16517Google Scholar

    [11]

    Preethi S, Babu K S 2019 J. Alloys Compd. 792 1068Google Scholar

    [12]

    Kim S 2016 Phys. Chem. Chem. Phys. 18 19787Google Scholar

    [13]

    Kim S, Kim S K, Khodorov S, Maier J, Lubomirsky I 2016 Phys. Chem. Chem. Phys. 18 3023Google Scholar

    [14]

    Guan L L, Le S R, He S F, Zhu X D, Liu T, Sun K N 2015 Electrochim. Acta 161 129Google Scholar

    [15]

    Kim S K, Khodorov S, Chen C, Kim S, Lubomirsky I 2013 Phys. Chem. Chem. Phys. 15 8716Google Scholar

    [16]

    Kim S, Jain P, Avila-Paredes H J, Thron A, Benthem K V, SEN S 2010 J. Mater. Chem. 20 3855Google Scholar

    [17]

    Mebane D S, De Souza R A 2015 Energy Environ. Sci. 8 2935Google Scholar

    [18]

    Wang M, Kang Q 2010 J. Comput. Phys. 229 728Google Scholar

    [19]

    徐晗, 张璐 2021 物理学报 70 068801

    Xu H, Zhang L 2021 Acta Phys. Sin. 70 068801

    [20]

    Gregori G, Merkle R, Maier J 2017 Prog. Mater Sci. 89 252Google Scholar

    [21]

    Xu H, Chen Y, Kim J H, Dang Z, Liu M L 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [22]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [23]

    Xu H, Dang Z 2017 Int. J. Heat Mass Transfer 109 1252Google Scholar

    [24]

    Dang Z, Xu H 2016 Energy 107 295Google Scholar

    [25]

    Guo Z Z, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [26]

    Connor P A, Yue X, Savaniu C D, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne D J, Maher R C, Cohen L F, Tomov R I, Glowacki B A, Kumar R V, Irvine J T S 2018 Adv. Energy Mater. 8 1800120Google Scholar

    [27]

    Chen Y, Chen Y, Ding D, Ding Y, Choi Y M, Zhang L, Yoo S, Chen D, deGlee B, Xu H, Lu Q, Zhao B, Vardar G, Wang J, Bluhme H, Crumline E J, Yang C, Liu J, Yildiz B, Liu M 2017 Energy Environ. Sci. 10 964Google Scholar

    [28]

    Zhang Y, Liu J, Singh M, Hu E, Jiang Z, Raza R, Wang F, Wang J, Yang F, Zhu B 2020 Nano-Micro Lett. 12 178Google Scholar

    [29]

    Zhu B 2009 Int. J. Energy Res. 33 1126Google Scholar

    [30]

    Zhu B, Li S, Mellander B E 2008 Electrochem. Commun. 10 302Google Scholar

    [31]

    郭向欣, 李泓 2011 物理 40 648

    Guo X, Li H 2011 Physics 40 648

    [32]

    Crumlin E J, Mutoro E, Ahn S, La O G J, Leonard D N, Borisevich A, Biegalski M D, Christen H M, Shao-Horn Y 2010 J. Phys. Chem. Lett. 1 3149Google Scholar

    [33]

    工藤徹一, 笛木和雄 (董治长 译) 1992 固态离子学 (北京: 北京工业大学出版社) 第35页

    Kudo T, Fueki K (translated by Dong Z C) 1992 Solid Ionics (Beijing: Beijing University of Technology Press) p35 (in Chinese)

  • 图 1  (a) SOFC模式电极几何结构示意图; (b), (c), (d)本文计算区域, 包括TPB附近的SCL与体相(Bulk)区域

    Fig. 1.  (a) Schematic of a patterned SOFC electrode; (b), (c), (d) computational domain considered in the present study, including the SCL and bulk area adjacent to the TPB.

    图 2  二维电阻网络图

    Fig. 2.  Two-dimensional resistance network.

    图 3  本文LB模型验证: 右边界(x/l0 = 1)与上边界(y/l0 = 1)电势分布

    Fig. 3.  Validation of the present LB model: Potential distributions at the right (x/l0 = 1) and top (y/l0 = 1) boundary.

    图 4  基准工况下TPB附近氧空位传输特性, 其中, 电势(a)与氧空位浓度(b)分布; 迁移(c)与扩散(d)电流密度大小及流线分布; 右边界(x/l0 = 1)电势、电势梯度与氧空位浓度(e), 以及电流密度与电荷密度分布(f)

    Fig. 4.  Oxygen vacancy transport adjacent to the TPB under standard case: Potential (a) and oxygen vacancy concentration (b) distribution; migration (c) and diffusion (d) current density streamline; distributions of potential, potential gradient, oxygen vacancy concentration (e), current density and charge density (f) at x/l0 = 1.

    图 5  不同无量纲平均电流密度(iav/i0)下SCL效应的影响, 其中, 不同iav/i0下SCL电阻与TPB中心点氧空位浓度(a)、以及SCL厚度(b)分布; 当iav/i0分别为–1.6, –1, 1, 1.6, 以及x/l0 = 1时的界面电势(c)、氧空穴浓度(d)、迁移(e)与扩散(f)电流密度分布

    Fig. 5.  Influences of SCL effect under different dimensionless average current densities (iav/i0): The SCL resistance, oxygen vacancy concentration at central TPB (a), and SCL thickness (b) under different iav/i0; distributions of potential (c), oxygen vacancy concentration (d), migration (e) and diffusion (f) current density when iav/i0 = –1.6, –1, 1 and 1.6 at x/l0 = 1.

    图 6  不同无量纲Debye长度(λD/l0)下SCL效应的影响, 其中, 不同λD/l0下SCL电阻与TPB中心点氧空位浓度(a)、以及SCL厚度(b)分布; 当λD/l0分别为0.005, 0.01, 0.05, 以及x/l0 = 1时的界面电势(c)、氧空穴浓度(d)、迁移(e)与扩散(f)电流密度分布

    Fig. 6.  Influences of SCL effect under different dimensionless Debye length (λD/l0): The SCL resistance, oxygen vacancy concentration at central TPB (a), and SCL thickness (b) under different λD/l0; distributions of potential (c), oxygen vacancy concentration (d), migration (e) and diffusion (f) current density when λD/l0 = 0.005, 0.01 and 0.05 at x/l0 = 1.

    图 7  不同无量纲电势(zV0/(RT ))下SCL效应的影响, 其中, 不同zV0/(RT )下SCL电阻与TPB中心点氧空位浓度(a)、以及SCL厚度(b)分布; 当zV0/(RT )分别为0.001, 0.01, 0.1, 以及x/l0 = 1时的界面电势(c)、氧空穴浓度(d)、迁移(e)与扩散(f)电流密度分布

    Fig. 7.  Influences of SCL effect under different dimensionless potential (zV0/(RT )): The SCL resistance, oxygen vacancy concentration at central TPB (a), and SCL thickness (b) under different zV0/(RT ); distributions of potential (c), oxygen vacancy concentration (d), migration (e) and diffusion (f) current density when zV0/(RT ) = 0.001, 0.01 and 0.1 at x/l0 = 1.

    表 1  本文的边界条件

    Table 1.  Boundary conditions of the present study.

    坐标边界条件
    $ y^* = 0 $$ \phi^* = 0, ~c_{\rm V}^* = 1 $
    $ y^* = 1 $ (非TPBs)${ {\partial \phi {^*} } / {\partial y^* } }= { {\partial c_{ {\rm V} }^*} / {\partial y^*} } = 0$
    $ y^* = 1 $ (TPBs)ϕ* = 1, $ {i}_{\mathrm{a}\mathrm{V}}^{*} $ = –0.4 (基准工况)
    $ x^* = 0 $与$ x^* = 1 $${ {\partial \phi {^*} } / {\partial x^* } }= { {\partial {c_{\rm{V} } }{^*} } / {\partial x^*} } = 0$
    下载: 导出CSV
  • [1]

    Wachsman E D, Lee K T 2011 Science 334 935Google Scholar

    [2]

    Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A 2016 Energy Environ. Sci. 9 1602Google Scholar

    [3]

    Tong X, Mebane D S, De Souza R A 2020 J. Am. Ceram. Soc. 103 5Google Scholar

    [4]

    Zhao C, Li Y, Zhang W, Zheng Y, Lou X, Yu B, Chen J, Chen Y, Liu M, Wang J 2020 Energy Environ. Sci. 13 53Google Scholar

    [5]

    Lynch M E, Yang L, Qin W, Choi J, Liu M, Blinn K, Liu M 2011 Energy Environ. Sci. 4 2249Google Scholar

    [6]

    Zheng Y, Zhao C H, Li Y F, Zhang W Q, Wu T, Wang Z C, Li Z P, Chen J, Wang J C, Yu B, Zhang J J 2020 Nano Energy 78 105236Google Scholar

    [7]

    Uthayakumar A, Pandiyan A, Mathiyalagan S, Keshri A K, Moorthy S B K 2020 J. Phys. Chem. C 124 5591Google Scholar

    [8]

    Uthayakumar A, Pandiyan A, Krishna Moorthy S B 2018 Int. J. Hydrogen Energy 43 23488Google Scholar

    [9]

    Shirpour M, Merkle R, Lin C T, Maier J 2012 Phys. Chem. Chem. Phys. 14 730Google Scholar

    [10]

    Iguchi F, Chen C, Yugami H, Kim S 2011 J. Mater. Chem. 21 16517Google Scholar

    [11]

    Preethi S, Babu K S 2019 J. Alloys Compd. 792 1068Google Scholar

    [12]

    Kim S 2016 Phys. Chem. Chem. Phys. 18 19787Google Scholar

    [13]

    Kim S, Kim S K, Khodorov S, Maier J, Lubomirsky I 2016 Phys. Chem. Chem. Phys. 18 3023Google Scholar

    [14]

    Guan L L, Le S R, He S F, Zhu X D, Liu T, Sun K N 2015 Electrochim. Acta 161 129Google Scholar

    [15]

    Kim S K, Khodorov S, Chen C, Kim S, Lubomirsky I 2013 Phys. Chem. Chem. Phys. 15 8716Google Scholar

    [16]

    Kim S, Jain P, Avila-Paredes H J, Thron A, Benthem K V, SEN S 2010 J. Mater. Chem. 20 3855Google Scholar

    [17]

    Mebane D S, De Souza R A 2015 Energy Environ. Sci. 8 2935Google Scholar

    [18]

    Wang M, Kang Q 2010 J. Comput. Phys. 229 728Google Scholar

    [19]

    徐晗, 张璐 2021 物理学报 70 068801

    Xu H, Zhang L 2021 Acta Phys. Sin. 70 068801

    [20]

    Gregori G, Merkle R, Maier J 2017 Prog. Mater Sci. 89 252Google Scholar

    [21]

    Xu H, Chen Y, Kim J H, Dang Z, Liu M L 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [22]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [23]

    Xu H, Dang Z 2017 Int. J. Heat Mass Transfer 109 1252Google Scholar

    [24]

    Dang Z, Xu H 2016 Energy 107 295Google Scholar

    [25]

    Guo Z Z, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [26]

    Connor P A, Yue X, Savaniu C D, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne D J, Maher R C, Cohen L F, Tomov R I, Glowacki B A, Kumar R V, Irvine J T S 2018 Adv. Energy Mater. 8 1800120Google Scholar

    [27]

    Chen Y, Chen Y, Ding D, Ding Y, Choi Y M, Zhang L, Yoo S, Chen D, deGlee B, Xu H, Lu Q, Zhao B, Vardar G, Wang J, Bluhme H, Crumline E J, Yang C, Liu J, Yildiz B, Liu M 2017 Energy Environ. Sci. 10 964Google Scholar

    [28]

    Zhang Y, Liu J, Singh M, Hu E, Jiang Z, Raza R, Wang F, Wang J, Yang F, Zhu B 2020 Nano-Micro Lett. 12 178Google Scholar

    [29]

    Zhu B 2009 Int. J. Energy Res. 33 1126Google Scholar

    [30]

    Zhu B, Li S, Mellander B E 2008 Electrochem. Commun. 10 302Google Scholar

    [31]

    郭向欣, 李泓 2011 物理 40 648

    Guo X, Li H 2011 Physics 40 648

    [32]

    Crumlin E J, Mutoro E, Ahn S, La O G J, Leonard D N, Borisevich A, Biegalski M D, Christen H M, Shao-Horn Y 2010 J. Phys. Chem. Lett. 1 3149Google Scholar

    [33]

    工藤徹一, 笛木和雄 (董治长 译) 1992 固态离子学 (北京: 北京工业大学出版社) 第35页

    Kudo T, Fueki K (translated by Dong Z C) 1992 Solid Ionics (Beijing: Beijing University of Technology Press) p35 (in Chinese)

  • [1] 王赫宇, 李忠磊, 杜伯学. 界面电子结构对核壳量子点/聚乙烯纳米复合绝缘电导与空间电荷特性的影响. 物理学报, 2024, 73(12): 127702. doi: 10.7498/aps.73.20232041
    [2] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [5] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [6] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [7] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [8] 李丽丽, 张晓虹, 王玉龙, 国家辉. 电场和温度对聚合物空间电荷陷阱性能的影响. 物理学报, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [9] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [10] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [11] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响. 物理学报, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [12] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [13] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征. 物理学报, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [14] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [15] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱. 物理学报, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [16] 石大为, 吴美玲, 杨昌平, 任春林, 肖海波, 王开鹰. Pr0.7Ca0.3MnO3陶瓷晶界势垒的交流特性. 物理学报, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [17] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [18] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [19] 杨昌平, 陈顺生, 戴琪, 宋学平. Nd0.7Sr0.3MnO3陶瓷EPIR效应的起源. 物理学报, 2011, 60(11): 117202. doi: 10.7498/aps.60.117202
    [20] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
计量
  • 文章访问数:  6419
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-01-21
  • 上网日期:  2021-06-16
  • 刊出日期:  2021-06-20

/

返回文章
返回