搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用弛豫法探寻新的双开口膜泡

孔祥波 张劭光

引用本文:
Citation:

用弛豫法探寻新的双开口膜泡

孔祥波, 张劭光

Exploring new opening-up membrane vesicles of two holes by using the relaxation method

Kong Xiang-Bo, Zhang Shao-Guang
PDF
导出引用
  • 基于面积差弹性模型, 用弛豫法探寻满足开口膜泡边界条件的欧拉-拉格朗日方程组的新解, 得到了双开口的哑铃形分支解, 并结合以前得到的单开口哑铃形及闭合哑铃形, 对它们之间的相变进行了深入的研究. 为了探究实验上是否可能发现这些形状, 与以往实验上观察到的较小约化弛豫面积差的杯形、管形、烟囱形开口形状的能量进行了比较, 发现这些新形状在较大的约化弛豫面积差值时, 在某些线张力区间比以往发现的形状能量更低. 另外为了对比, 本文对于实验上已知的杯形、管形、烟囱形及球形之间的相变行进行了探讨, 并对两者之间的不同特点进行了对比.
    Due to the discovery and study of opening-up lipid vesicles, the theoretical analysis and numerical calculation have aroused increasing interests of researchers. In the previous study, Suezaki and Umeda gave the opening-up vesicles near the spherical vesicles, such as the dish and cup shapes with one hole, and the tube and funnel shapes with two holes. These shapes are found at relatively low values of reduced, relaxed area difference a0. However, what are the stable shapes for high values of a0 is not known. Kang et al. found solutions of opening up dumbbell shapes with one hole. Whether or not there exist dumbbell shapes with two holes, and the phase transformation behavior between them remains unknown. The purpose of this paper is to explore a new kind of two-hole dumbbell shaped lipid vesicles and phase transformations between this kind of vesicle and previously found vesicles. Based on the area-difference-elasticity model, this paper tries to explore new solutions of the Euler-Lagrange equations of the opening-up membrane vesicles which meet the boundary conditions by using the relaxation method. A new branch of solution of dumbbell shapes with two holes is found. The phase transformations of closed dumbbell shapes and opening-up dumbbell shapes with one hole and two holes are studied in detail. To explore whether these shapes could be found in experiments, the energy of the cup, tube, and funnel shaped vesicles are also compared with the opening-up dumbbell shapes. It is found that at high values of a0, all the cup, tube, and funnel shapes will transform into closed spherical vesicles. So the energy of new opening-up dumbbell vesicles can be compared to that of closed spherical vesicles and closed dumbbell vesicles. It is found that the dumbbell shapes with one hole and two holes all have stable regions, implying that it is possible for these open dumbbells to be observed. Since the distance in the functional space is too far between the open dumbbell shapes and spherical vesicles, experimental test is needed to verify whether the dumbbell shapes with two holes will evolve continuously to the closed dumbbell shapes or to the closed spherical vesicles. It has been noticed that for relatively small values of a0, two holes vesicles may exhibit symmetrical tube shapes and asymmetric funnel shapes between which the phase transformation is continuous, because the funnel solutions bifurcate from the tube solutions. In order to check whether there exist asymmetric opening-up dumbbell shapes with two holes and the similar bifurcation behavior, a thorough search is made in the parameter space. So far no asymmetric dumbbell shape with two holes is found.
      通信作者: 张劭光, zhangsg@snnu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: GK201302011)和国家自然科学基金(批准号: 10374063)资助的课题.
      Corresponding author: Zhang Shao-Guang, zhangsg@snnu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. GK201302011), and the National Natural Science Foundation of China (Grant No. 10374063).
    [1]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11651

    [2]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11660

    [3]

    Saitoh A, Takiguchi K, Tanaka Y Hotani H 1998 Proc. Natl. Acad. Sci. USA 95 1026

    [4]

    de Gennes P G, Tauppin C 1982 J. Phys. Chem. 86 2294

    [5]

    Bar-Ziv R, Frisch T, Moses E 1995 Phys. Rev. Lett. 75 3481

    [6]

    Zhelev D V, Needham D 1993 Biochim. Biophys. Acta 1147 89

    [7]

    Capovilla R, Guven J, Santiago J A 2002 Phys. Rev. E 66 021607

    [8]

    Tu Z C, Ouyang Z C 2003 Phys. Rev. E 68 061915

    [9]

    Li S L, Zhang S G 2010 Acta Phys. Sin. 59 5202 (in Chinese) [李树玲, 张劭光 2010 物理学报 59 5202]

    [10]

    Umeda T, Suezaki Y 2005 Phys. Rev. E 71 011913

    [11]

    Kang W B, Zhang S G, Wang Y, Mu Y R, Huang C 2011 Sci. China: Phys. Mech. Astron. 54 2243

    [12]

    Huang C, Zhang S G 2013 J. Shaanxi Normal Univ. (Natural Science Edition) 41 0031 (in Chinese) [黄聪, 张劭光 2013 陕西师范大学学报 (自然科学版) 41 0031]

    [13]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [14]

    Miao L, Seifert U, Wortis M, Dobereinert H G 1994 Phys. Rev. E 49 5389

    [15]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [16]

    Tu Z C 2010 J. Chem. Phys. 132 084111

    [17]

    Press W H, Teukolsky S A, Vetterling S A, Flannery B P 1996 Numerical Recipes in Fortran (Second Edition) (U.K.: Cambridge University Press) pp1316-1320

    [18]

    He G Y, Gao Y L 2002 Visual Fortran Commonly Used Numerical Algorithms (First Edition) (Beijing: Science Press) pp657-678 (in Chinese) [何光渝, 高永利 2002 Visual Fortran 常用数值算法 (第一版) (北京: 科学出版社) 第 657-678 页]

  • [1]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11651

    [2]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11660

    [3]

    Saitoh A, Takiguchi K, Tanaka Y Hotani H 1998 Proc. Natl. Acad. Sci. USA 95 1026

    [4]

    de Gennes P G, Tauppin C 1982 J. Phys. Chem. 86 2294

    [5]

    Bar-Ziv R, Frisch T, Moses E 1995 Phys. Rev. Lett. 75 3481

    [6]

    Zhelev D V, Needham D 1993 Biochim. Biophys. Acta 1147 89

    [7]

    Capovilla R, Guven J, Santiago J A 2002 Phys. Rev. E 66 021607

    [8]

    Tu Z C, Ouyang Z C 2003 Phys. Rev. E 68 061915

    [9]

    Li S L, Zhang S G 2010 Acta Phys. Sin. 59 5202 (in Chinese) [李树玲, 张劭光 2010 物理学报 59 5202]

    [10]

    Umeda T, Suezaki Y 2005 Phys. Rev. E 71 011913

    [11]

    Kang W B, Zhang S G, Wang Y, Mu Y R, Huang C 2011 Sci. China: Phys. Mech. Astron. 54 2243

    [12]

    Huang C, Zhang S G 2013 J. Shaanxi Normal Univ. (Natural Science Edition) 41 0031 (in Chinese) [黄聪, 张劭光 2013 陕西师范大学学报 (自然科学版) 41 0031]

    [13]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [14]

    Miao L, Seifert U, Wortis M, Dobereinert H G 1994 Phys. Rev. E 49 5389

    [15]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [16]

    Tu Z C 2010 J. Chem. Phys. 132 084111

    [17]

    Press W H, Teukolsky S A, Vetterling S A, Flannery B P 1996 Numerical Recipes in Fortran (Second Edition) (U.K.: Cambridge University Press) pp1316-1320

    [18]

    He G Y, Gao Y L 2002 Visual Fortran Commonly Used Numerical Algorithms (First Edition) (Beijing: Science Press) pp657-678 (in Chinese) [何光渝, 高永利 2002 Visual Fortran 常用数值算法 (第一版) (北京: 科学出版社) 第 657-678 页]

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化. 物理学报, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [3] 梁月凤, 张劭光. 单开口膜泡形状转变的研究. 物理学报, 2017, 66(15): 158701. doi: 10.7498/aps.66.158701
    [4] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [5] 宋丹, 樊晓平, 刘钟理. 一种基于非基因信息的免疫记忆优化算法. 物理学报, 2015, 64(14): 140203. doi: 10.7498/aps.64.140203
    [6] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [7] 严柏平, 张成明, 李立毅, 唐志峰, 吕福在, 杨克己. Tb0.3Dy0.7Fe2合金的本构参数辨识方法研究. 物理学报, 2015, 64(2): 027501. doi: 10.7498/aps.64.027501
    [8] 杨芳艳, 胡明, 姚尚平. 连续时间系统同宿轨的搜索算法及其应用. 物理学报, 2013, 62(10): 100501. doi: 10.7498/aps.62.100501
    [9] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [10] 李杰, 朱京平. 光波导短程透镜加工容限误差研究. 物理学报, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [11] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [12] 赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能. 玻璃化转变的分子串模型中分子串弛豫模式的计算机模拟. 物理学报, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [13] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟. 物理学报, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [14] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [15] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [16] 李树玲, 张劭光. 双凹盘形解开口膜泡形状的解析法研究. 物理学报, 2010, 59(8): 5202-5208. doi: 10.7498/aps.59.5202
    [17] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [18] 宋法伦, 张永辉, 向 飞, 常安碧. 强流电子束碰撞电离背景气体研究. 物理学报, 2008, 57(3): 1807-1812. doi: 10.7498/aps.57.1807
    [19] 马再如, 冯国英, 陈建国, 朱启华, 曾小明, 刘文兵, 周寿桓. 多个超短脉冲相干叠加构成窄带平顶长脉冲的研究. 物理学报, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  5324
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 修回日期:  2015-12-31
  • 刊出日期:  2016-03-05

/

返回文章
返回