-
Ferroelectricity, which exhibits a spontaneous electrical polarization under Curie temperature, is of potential value for sensors, photonics and energy-efficient memories, solar cell, and photoelectrochemical applications. With the rapid development of high-density electronic devices, miniaturized and integrated ferroelectric devices have been a development tendency for ferroelectric materials. However, the size effect and surface effect restrict the applications of traditional bulk ferroelectric materials on a nanometer scale. Therefore the ferroelectric properties of low-dimensional nanomaterials have become an extensively studying subject in the field of material science. In this article, we review the theoretical and experimental researches of low-dimensional ferroelectric materials in recent years, including two-dimensional van der Waals layered ferroelectric materials, covalent functionalized ferroelectric materials, low-dimensional perovskite materials, external regulation and two-dimensional hyperferroelectric metal. We first give a concise outline of the basic theory, which relates to the existence of ferroelectricity. And then, we introduce the intrinsic ferroelectricity into two-dimensional materials. Many samples have been predicted, and the origin of ferroelectricity can be attributed to the soft modes of phonon, which leads to the ion displacements. Further, we discuss the ferroelectricity in covalent-modified two-dimensional materials. In such structures, the modified groups produce spontaneous electric dipoles, and lead to the macroscopical ferroelectricity. Therefore, we focus on how to design such structures, and the consequent ferreoelectricity. Considering the big potential of perovskite structures in ferroelectric family, we also discuss the recently reported low-dimensional perovskite structures, indicating several competitive mechanisms in such complex compounds. Additionally, we also introduce the research progress of other aspects in this field, including charge-polar induced ferroelectricity, two-dimensional ferromagnetic ferroelectrics, and hyperferroelectric metal. The reported new physical mechanisms are also provided to explain the low-dimensional ferroelectrics. Thus, such results not only mark the research of low-dimensional materials entering into a new stage, but also provide abundant physics in this area. Finally, the development prospects for low-dimensional ferroelectrics are also discussed.
[1] Lu H, Bark C W, de los Esque Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59
[2] Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63
[3] Scott J F 2007 Science 315 954
[4] Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617
[5] Efremov D V, van den Brink J, Khomskii D I 2004 Nat. Mater. 3 853
[6] Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166
[7] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kit H 2005 Nature 436 1136
[8] Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083
[9] Junquera J, Ghosez P 2003 Nature 422 506
[10] Spaldin N A 2004 Science 304 1606
[11] Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P, Thompson C 2004 Science 304 1650
[12] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666
[13] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197
[14] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
[15] Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213
[16] Liu H, Neal A T, Zhu Z, Tomanek D, Ye P D 2014 ACS Nano 8 4033
[17] Topsakal M, Akturk E, Ciraci S 2009 Phys. Rev. B 79 115442
[18] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
[19] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854
[20] Kou L, Chen C, Smith S C 2015 J. Phys. Chem. Lett. 6 2794
[21] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393
[22] Ginzburg V L 1949 Zh. Eksp. Teor. Fiz. 19 36
[23] Devonshire A F 1954 Adv. Phys. 3 85
[24] Cochran W 1960 Adv. Phys. 9 387
[25] Anderson P W 1960 Fizika Dielektrikov (Moscow: Akad. Nauk. SSSR)
[26] De Gennes P G 1963 Solid State Commun. 1 132
[27] Brout R, Mller K A, Thomas H 1966 Adv. Phys. 4 507
[28] Zhou J H, Yang C Z 1997 Solid State Commun. 101 639
[29] Onsager L 1944 Phys. Rev. 65 117
[30] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601
[31] Sante D D, Stroppa A, Barone P, Whangbo M H, Picozzi S 2015 Phys. Rev. B 91 161401
[32] Guan S, Liu C, Lu Y, Yao Y, Yang S A 2017 arXiv:171204265v2 [cond-mat.mtrl-sci]
[33] von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771
[34] Xiao C, Wang F, Yang S A, Lu Y 2017 arXiv:1706.05629 [cond-mat.mtrl-sci]
[35] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274
[36] Kooi B J, Noheda B 2016 Science 353 221
[37] Wan W, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904
[38] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956
[39] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508
[40] Wu M, Zeng X C 2016 Nano Lett. 16 3236
[41] Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601
[42] Wang H, Qian X 2017 2D Mater. 4 015042
[43] Li L, Wu M 2017 ACS Nano 11 6382
[44] Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2012 J. Am. Chem. Soc. 134 14423
[45] Tu Z, Wu M, Zeng X C 2017 J. Phys. Chem. Lett. 8 1973
[46] Maisonneuve V, Cajipe V B, Simon A, von der Muhll R, Ravez J 1997 Phys. Rev. B 56 10860
[47] Studenyak I P, Mitrovcij V V, Kovacs G S, Gurzan M I, Mykajlo O A, Vysochanskii Y M, Cajipe V B 2003 Phys. Status Solidi B 236 678
[48] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808
[49] Chyasnavichyus M, Susner M A, Ievlev A V, Eliseev E A, Kalinin S V, Balke N, Morozovska A N, McGuire M A 2016 Appl. Phys. Lett. 109 172901
[50] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357
[51] Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427
[52] Song W, Fei R, Yang L 2017 Phys. Rev. B 96 235420
[53] Kan E, Wu F, Deng K, Tang W 2013 Appl. Phys. Lett. 103 193103
[54] Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena1 P 2013 Phys. Rev. B 87 081406
[55] Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309
[56] Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506
[57] Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290
[58] Lu J, Luo W, Feng J, Xiang H 2018 Nano Lett. 18 595
[59] Zhang X, Yang Z, Chen Y 2017 J. Appl. Phys. 122 064101
[60] Hu T, Wu H, Zeng H, Deng K, Kan E 2016 Nano Lett. 16 8015
[61] Huang C, Du Y, Wu H, Xiang H, Deng K, Kan E 2018 Phys. Rev. Lett. 120 147601
[62] Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217
[63] Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024
[64] Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415
期刊类型引用(9)
1. 朱孟龙,杨俊,董玉兰,周源,邵岩,侯海良,陈智慧,何军. Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究. 物理学报. 2024(01): 129-136 . 百度学术 2. 张俊廷,吴宗铄,沈小凡. 姜泰勒扭曲和轨道序诱导的二维铁磁性. 物理学报. 2024(01): 291-301 . 百度学术 3. 王哲,许劼敏,王文君,李何轩,邹优鸣,于璐,屈哲. 多铁材料MnSb_2O_6中自旋涨落的ESR研究. 物理学报. 2022(01): 278-283 . 百度学术 4. 耿晨铎,张诗俊,吴春香,卿晓梅,董正超,仲崇贵. 双轴应变调控二维单层C_2X_2TM(X=O, H;TM=Fe, Cr)的多铁性研究. 原子与分子物理学报. 2022(06): 77-82 . 百度学术 5. 黄鸿飞,姚杨,姚承君,郝翔,吴银忠. In_2Se_3薄膜的掺杂效应及其纳米带铁电性. 物理学报. 2022(19): 316-323 . 百度学术 6. 安明,董帅. 电荷媒介的磁电耦合:从铁电场效应到电荷序铁电体. 物理学报. 2020(21): 35-42 . 百度学术 7. 李敏,时鑫娜,张泽霖,吉彦达,樊济宇,杨浩. 柔性Pb(Zr_(0.53)Ti_(0.47))O_3薄膜的高温铁电特性. 物理学报. 2019(08): 229-234 . 百度学术 8. 张小娅,王金斌,钟向丽,刘琼,文豪,吕扬. 二维铁电材料的研究进展. 湘潭大学学报(自然科学版). 2019(04): 92-106 . 百度学术 9. 王景坡,凌洋,袁巨龙,杭伟,张韬杰. 典型铁电功能材料加工技术现状及展望. 机电工程. 2019(12): 1298-1302 . 百度学术 其他类型引用(17)
-
[1] Lu H, Bark C W, de los Esque Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59
[2] Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63
[3] Scott J F 2007 Science 315 954
[4] Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617
[5] Efremov D V, van den Brink J, Khomskii D I 2004 Nat. Mater. 3 853
[6] Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166
[7] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kit H 2005 Nature 436 1136
[8] Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083
[9] Junquera J, Ghosez P 2003 Nature 422 506
[10] Spaldin N A 2004 Science 304 1606
[11] Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P, Thompson C 2004 Science 304 1650
[12] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666
[13] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197
[14] Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768
[15] Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213
[16] Liu H, Neal A T, Zhu Z, Tomanek D, Ye P D 2014 ACS Nano 8 4033
[17] Topsakal M, Akturk E, Ciraci S 2009 Phys. Rev. B 79 115442
[18] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
[19] Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854
[20] Kou L, Chen C, Smith S C 2015 J. Phys. Chem. Lett. 6 2794
[21] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393
[22] Ginzburg V L 1949 Zh. Eksp. Teor. Fiz. 19 36
[23] Devonshire A F 1954 Adv. Phys. 3 85
[24] Cochran W 1960 Adv. Phys. 9 387
[25] Anderson P W 1960 Fizika Dielektrikov (Moscow: Akad. Nauk. SSSR)
[26] De Gennes P G 1963 Solid State Commun. 1 132
[27] Brout R, Mller K A, Thomas H 1966 Adv. Phys. 4 507
[28] Zhou J H, Yang C Z 1997 Solid State Commun. 101 639
[29] Onsager L 1944 Phys. Rev. 65 117
[30] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601
[31] Sante D D, Stroppa A, Barone P, Whangbo M H, Picozzi S 2015 Phys. Rev. B 91 161401
[32] Guan S, Liu C, Lu Y, Yao Y, Yang S A 2017 arXiv:171204265v2 [cond-mat.mtrl-sci]
[33] von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771
[34] Xiao C, Wang F, Yang S A, Lu Y 2017 arXiv:1706.05629 [cond-mat.mtrl-sci]
[35] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274
[36] Kooi B J, Noheda B 2016 Science 353 221
[37] Wan W, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904
[38] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956
[39] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508
[40] Wu M, Zeng X C 2016 Nano Lett. 16 3236
[41] Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601
[42] Wang H, Qian X 2017 2D Mater. 4 015042
[43] Li L, Wu M 2017 ACS Nano 11 6382
[44] Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2012 J. Am. Chem. Soc. 134 14423
[45] Tu Z, Wu M, Zeng X C 2017 J. Phys. Chem. Lett. 8 1973
[46] Maisonneuve V, Cajipe V B, Simon A, von der Muhll R, Ravez J 1997 Phys. Rev. B 56 10860
[47] Studenyak I P, Mitrovcij V V, Kovacs G S, Gurzan M I, Mykajlo O A, Vysochanskii Y M, Cajipe V B 2003 Phys. Status Solidi B 236 678
[48] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808
[49] Chyasnavichyus M, Susner M A, Ievlev A V, Eliseev E A, Kalinin S V, Balke N, Morozovska A N, McGuire M A 2016 Appl. Phys. Lett. 109 172901
[50] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357
[51] Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427
[52] Song W, Fei R, Yang L 2017 Phys. Rev. B 96 235420
[53] Kan E, Wu F, Deng K, Tang W 2013 Appl. Phys. Lett. 103 193103
[54] Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena1 P 2013 Phys. Rev. B 87 081406
[55] Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309
[56] Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506
[57] Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290
[58] Lu J, Luo W, Feng J, Xiang H 2018 Nano Lett. 18 595
[59] Zhang X, Yang Z, Chen Y 2017 J. Appl. Phys. 122 064101
[60] Hu T, Wu H, Zeng H, Deng K, Kan E 2016 Nano Lett. 16 8015
[61] Huang C, Du Y, Wu H, Xiang H, Deng K, Kan E 2018 Phys. Rev. Lett. 120 147601
[62] Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217
[63] Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024
[64] Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415
期刊类型引用(9)
1. 朱孟龙,杨俊,董玉兰,周源,邵岩,侯海良,陈智慧,何军. Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究. 物理学报. 2024(01): 129-136 . 百度学术 2. 张俊廷,吴宗铄,沈小凡. 姜泰勒扭曲和轨道序诱导的二维铁磁性. 物理学报. 2024(01): 291-301 . 百度学术 3. 王哲,许劼敏,王文君,李何轩,邹优鸣,于璐,屈哲. 多铁材料MnSb_2O_6中自旋涨落的ESR研究. 物理学报. 2022(01): 278-283 . 百度学术 4. 耿晨铎,张诗俊,吴春香,卿晓梅,董正超,仲崇贵. 双轴应变调控二维单层C_2X_2TM(X=O, H;TM=Fe, Cr)的多铁性研究. 原子与分子物理学报. 2022(06): 77-82 . 百度学术 5. 黄鸿飞,姚杨,姚承君,郝翔,吴银忠. In_2Se_3薄膜的掺杂效应及其纳米带铁电性. 物理学报. 2022(19): 316-323 . 百度学术 6. 安明,董帅. 电荷媒介的磁电耦合:从铁电场效应到电荷序铁电体. 物理学报. 2020(21): 35-42 . 百度学术 7. 李敏,时鑫娜,张泽霖,吉彦达,樊济宇,杨浩. 柔性Pb(Zr_(0.53)Ti_(0.47))O_3薄膜的高温铁电特性. 物理学报. 2019(08): 229-234 . 百度学术 8. 张小娅,王金斌,钟向丽,刘琼,文豪,吕扬. 二维铁电材料的研究进展. 湘潭大学学报(自然科学版). 2019(04): 92-106 . 百度学术 9. 王景坡,凌洋,袁巨龙,杭伟,张韬杰. 典型铁电功能材料加工技术现状及展望. 机电工程. 2019(12): 1298-1302 . 百度学术 其他类型引用(17)
计量
- 文章访问数: 12805
- PDF下载量: 1413
- 被引次数: 26