搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In2Se3薄膜的掺杂效应及其纳米带铁电性

黄鸿飞 姚杨 姚承君 郝翔 吴银忠

引用本文:
Citation:

In2Se3薄膜的掺杂效应及其纳米带铁电性

黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠

Doping effect and ferroelectricity of nanoribbons of In2Se3 monolayer

Huang Hong-Fei, Yao Yang, Yao Cheng-Jun, Hao Xiang, Wu Yin-Zhong
PDF
HTML
导出引用
  • 低维材料的铁电性一直是凝聚态物理和材料科学领域的研究热点, 在新型纳米电子器件的设计和应用等方面有重要的潜在应用和学术价值. 本文基于密度泛函理论的第一性计算, 以实验上已经验证的二维铁电材料In2Se3薄膜为出发点, 研究了二维In2Se3薄膜的掺杂效应和In2Se3纳米带的铁电性. 结果发现铁电性和金属性在静电掺杂的In2Se3薄膜中可以稳定共存, 且电子掺杂会同时增强面内和面外极化, 空穴掺杂可以增强面外极化, 但抑制面内极化, 从原子结构畸变和电子结构等角度详细解释了载流子掺杂对薄膜面内极化和面外极化的影响以及物理机制. 针对In2Se3纳米带的研究, 发现一维铁电性可以在In2Se3纳米线中存在, 计算并给出了纳米带的局域极化分布和带隙, 拟合了带隙和纳米带宽度之间满足$E_{\text{g}}^{{\text{NR}}} \text- 1/{w^2}$标度关系. 以期此研究可为拓宽二维铁电薄膜及其纳米结构的应用提供理论指导.
    Ferroelectricity and nanostructure in low-dimensional material are a research hotspot in the condensed matter physics and material science, The low-dimensional material is significant for the application and desig of nano-electronic devices. Based on the density functional theory, the In2Se3 monolayer, whose two-dimensional ferroelectricity has already been confirmed in experiment, is selected, and the ferroelectricity in the doped film and its nanoribbons are investigated. It is found that the ferroelectricity and the conductivity can coexist in the doped monolayer, and the electron doping enhances both the in-plane polarization (PIP) and the out-of-plane polarization (POOP), while the PIP is enhanced and POOP is depressed in the case of hole doping. The mechanism of the variation of polarization in the doped film is discussed on the basis of atomic distortions and electronic structures. As the In2Se3 nanoribbons are concerned, the one-dimensional ferroelectricity can be found in the In2Se3 nanowire, and the local polarization distribution within In2Se3 nanoribbons and its band gap are calculated and discussed. Furthermore, the scaling law between the band gap and the width of nanoribbon is obtained by fitting the numerical results. It is expected that our study can broaden the application scope of 2D ferroelectric films and its nanostructures.
      通信作者: 吴银忠, yzwu@usts.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274054)和江苏省研究生科研创新计划(批准号: KYCX21-3004) 资助的课题.
      Corresponding author: Wu Yin-Zhong, yzwu@usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274054) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX21-3004).
    [1]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [2]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [3]

    Hu T, Kan E J 2019 WIREs Comput. Mol. Sci. 9 e1409Google Scholar

    [4]

    Wu M H, Puru J 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar

    [5]

    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2019 Adv. Electron. Mater. 6 1900818Google Scholar

    [6]

    Yuan Z L, Sun Y, Wang D, Chen K Q, Tang L M 2021 J. Phys. Condens. Matter 33 403003Google Scholar

    [7]

    Shang J, Tang X, Kou L Z 2020 WIREs Comput. Mol. Sci. 11 e1496Google Scholar

    [8]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [9]

    Qiao H, Wang C, Woo Seok C, Min Hyuk P, Yunseok K 2021 Mater. Sci. Eng. R 145 100622Google Scholar

    [10]

    吴银忠, 黄鸿飞, 卢美辰, 孙智征 2020 苏州科技大学学报 (自然科学版) 37 1Google Scholar

    Wu Y Z, Huang H F, Lu M C, Sun Z Z 2020 J. Suzhou Univ. of Sci. Tech. (Natural Science Edition) 37 1Google Scholar

    [11]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [12]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [15]

    Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar

    [16]

    Cui C J, Hu W J, Yan X G, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [17]

    Xue F, Zhang J W, Hu W J, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S H, Zhang J L, He J H, Chang W H, Wang Z L, Zhang X X, Li L J 2018 ACS Nano 12 4976Google Scholar

    [18]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [19]

    Zhai B, Cheng R, Yao W, Yin L, Shen C, Xia C, He J 2021 Phys. Rev. B 103 214114Google Scholar

    [20]

    Zhou B, Gong S J, Jiang K, Xu L P, Zhu L Q, Shang L Y, Li Y W, Hu Z G, Chu J H 2020 J. Phys. Condens. Matter 32 055703Google Scholar

    [21]

    Yang H, Xiao M Q, Cui Y, Pan L F, Zhao K, Wei Z M 2019 Science China Information Sciences 62 220404Google Scholar

    [22]

    Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L, Cheng Z X 2020 Nat. Commun. 11 5930Google Scholar

    [23]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [24]

    Mukherjee S, Koren E 2022 Isr. J. Chem. 62 e202100112Google Scholar

    [25]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [26]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [27]

    Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Neto A H C, Loh K P 2018 Nano Lett. 18 6340Google Scholar

    [28]

    Edelstein V M 2011 Phys. Rev. B 83 113109Google Scholar

    [29]

    Wijethunge D, Zhang L, Du A J 2021 J. Mater. Chem. C 9 11343Google Scholar

    [30]

    Puggioni D, Rondinelli J M 2014 Nat. Commun. 5 3432Google Scholar

    [31]

    Puggioni D, Giovannetti G, Capone M, Rondinelli J M 2015 Phys. Rev. Lett. 115 087202Google Scholar

    [32]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 532

    [33]

    Shi Y G, Guo Y F, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N L, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024Google Scholar

    [34]

    Xi X, Berger H, Forro L, Shan L and Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar

    [35]

    Chen Z Y, Yuan H T, Xie Y W, Lu D, Inoue H, Hikita Y, Bell C and Hwang H Y 2016 Nano Lett. 16 6130Google Scholar

    [36]

    Wang Y, Liu X H, Burton J D, Jaswal S S, Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601Google Scholar

    [37]

    He X, Jin K J 2016 Phys. Rev. B 94 224107Google Scholar

    [38]

    Xia C L, Chen Y, Chen H H 2019 Phys. Rev. Mater. 3 054405Google Scholar

    [39]

    Xu T, Zhang J T, Zhu Y Q, Wang J, Shimada T, Kitamura T, Zhang T Y 2020 Nanoscale Horiz. 5 1400Google Scholar

    [40]

    Yao C J, Huang H F, Yao Y, Wu Y Z, Hao X 2021 J. Phys. Condens. Matter 33 145302Google Scholar

    [41]

    Shimada T, Minaguro K, Xu T, Wang J, Kitamura T 2020 Nanomaterials 10 732Google Scholar

    [42]

    Zhang J J, Guan J, Dong S, Yakobson B I 2019 J. Am. Chem. Soc. 141 15040Google Scholar

    [43]

    Fan Z Q, Jiang X W, Wei Z M, Luo J W, Li S S 2017 J. Phys. Chem. C 121 14373Google Scholar

    [44]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar

    [45]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [47]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [48]

    KingSmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [49]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [50]

    Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys. Condens. Matter 32 105501Google Scholar

    [51]

    Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618Google Scholar

    [52]

    Zhu L Y, Lu Y, Wang L 2020 J. Appl. Phys. 127 014101Google Scholar

    [53]

    Soleimani M, Pourfath M 2020 Nanoscale 12 22688Google Scholar

    [54]

    Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar

    [55]

    Zhao X Y, Wei C M, Yang L, Chou M Y 2004 Phys. Rev. Lett. 92 236805Google Scholar

  • 图 1  α-In2Se3单层薄膜结构示意图, 其中PIP表示面内极化, POOP表示面外极化, dr和dl表示铁电相的中间层Se2原子在面外和面内方向偏移顺电相的位移

    Fig. 1.  Structure of ferroelectric α-In2Se3 monolayer, where PIP stands for the in-plane polarization, and POOP denotes the out-of-plane polarization, dr and dl are the distortions of Se2 atom along the out-of-plane and in-plane directions, respectively.

    图 2  In2Se3纳米带示意图 (a) 整体图; (b) 俯视图, w表示纳米带的宽度; (c) 侧视图

    Fig. 2.  Illustration of In2Se3 nanoribbon, (a) Over view; (b) top view, w denotes the width of the nanoribbon; (c) side view.

    图 3  In2Se3薄膜的极化随掺杂浓度的变化 (a)电子掺杂; (b)空穴掺杂

    Fig. 3.  The in-plane and out-of-plane polarization of In2Se3 monolayer as a function of doping concentration for the case of (a) electron doping and (b) hole doping.

    图 4  掺杂In2Se3薄膜的电子态密度轨道投影图v(a)未掺杂, (b)电子掺杂ne = 0.3, (c)空穴掺杂nh = 0.3, 图中垂直的短划线表示费米面的位置, (b)和(c)中插图分别是导带底和价带顶的DOS放大图

    Fig. 4.  Projected-DOS of doped In2Se3 monolayers: (a)Non-doping; (b) electron doping ne = 0.3; (c) hole doping nh = 0.3, and the dashed line indicates the Fermi level, the inserts in (b) and (c) are the enlarged images near the CBM and VBM, respectively.

    图 5  纳米带极化随纳米带宽度变化曲线

    Fig. 5.  Polarization of In2Se3 nanoribbons as a function of the width.

    图 6  In2Se3面内晶格常数a和厚度t随纳米带宽度w变化曲线

    Fig. 6.  The in-plane lattice constant a and the thickness t of In2Se3 nanoribbon as a function of the width w.

    图 7  纳米带极化分布图(纳米带宽度分别为 1 u. c., 2 u. c., 3 u. c. 和 4 u. c.), 其中平面内极化大小和方向用矢量表示. 垂直平面的极化大小用颜色来表示, 且负号代表面外极化方向朝下, 正号代表面外极化朝上

    Fig. 7.  Distribution of polarization within In2Se3 nanoribbon with different width (w = 1 u.c., 2 u.c., 3 u.c. and 4 u.c.), where the magnitude and the direction of PIP are indicated by vector, the magnitude of POOP is described by different color, and the positive value of POOP denotes the up direction and negative value denotes the down direction.

    图 8  In2Se3纳米带带隙随纳米带宽度的变化曲线, 图中水平短划线(黑色)是薄膜的带隙, 实线(红色)是拟合曲线

    Fig. 8.  Band gap of In2Se3 nanoribbon as a function of the width of nanoribbon, where the dashed line denotes the band gap of monolayer, and the red solid line is the fitted curve.

  • [1]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [2]

    胡婷, 阚二军 2018 物理学报 67 157701Google Scholar

    Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar

    [3]

    Hu T, Kan E J 2019 WIREs Comput. Mol. Sci. 9 e1409Google Scholar

    [4]

    Wu M H, Puru J 2018 WIREs Comput. Mol. Sci. 8 e1365Google Scholar

    [5]

    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2019 Adv. Electron. Mater. 6 1900818Google Scholar

    [6]

    Yuan Z L, Sun Y, Wang D, Chen K Q, Tang L M 2021 J. Phys. Condens. Matter 33 403003Google Scholar

    [7]

    Shang J, Tang X, Kou L Z 2020 WIREs Comput. Mol. Sci. 11 e1496Google Scholar

    [8]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [9]

    Qiao H, Wang C, Woo Seok C, Min Hyuk P, Yunseok K 2021 Mater. Sci. Eng. R 145 100622Google Scholar

    [10]

    吴银忠, 黄鸿飞, 卢美辰, 孙智征 2020 苏州科技大学学报 (自然科学版) 37 1Google Scholar

    Wu Y Z, Huang H F, Lu M C, Sun Z Z 2020 J. Suzhou Univ. of Sci. Tech. (Natural Science Edition) 37 1Google Scholar

    [11]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [12]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [13]

    Yang Q, Wu M, Li J 2018 J. Phys. Chem. Lett. 9 7160Google Scholar

    [14]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [15]

    Wang H, Qian X F 2017 2D Mater. 4 015042Google Scholar

    [16]

    Cui C J, Hu W J, Yan X G, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [17]

    Xue F, Zhang J W, Hu W J, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S H, Zhang J L, He J H, Chang W H, Wang Z L, Zhang X X, Li L J 2018 ACS Nano 12 4976Google Scholar

    [18]

    Gong C, Kim E M, Wang Y, Lee G, Zhang X 2019 Nat. Commun. 10 2657Google Scholar

    [19]

    Zhai B, Cheng R, Yao W, Yin L, Shen C, Xia C, He J 2021 Phys. Rev. B 103 214114Google Scholar

    [20]

    Zhou B, Gong S J, Jiang K, Xu L P, Zhu L Q, Shang L Y, Li Y W, Hu Z G, Chu J H 2020 J. Phys. Condens. Matter 32 055703Google Scholar

    [21]

    Yang H, Xiao M Q, Cui Y, Pan L F, Zhao K, Wei Z M 2019 Science China Information Sciences 62 220404Google Scholar

    [22]

    Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L, Cheng Z X 2020 Nat. Commun. 11 5930Google Scholar

    [23]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [24]

    Mukherjee S, Koren E 2022 Isr. J. Chem. 62 e202100112Google Scholar

    [25]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [26]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [27]

    Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Neto A H C, Loh K P 2018 Nano Lett. 18 6340Google Scholar

    [28]

    Edelstein V M 2011 Phys. Rev. B 83 113109Google Scholar

    [29]

    Wijethunge D, Zhang L, Du A J 2021 J. Mater. Chem. C 9 11343Google Scholar

    [30]

    Puggioni D, Rondinelli J M 2014 Nat. Commun. 5 3432Google Scholar

    [31]

    Puggioni D, Giovannetti G, Capone M, Rondinelli J M 2015 Phys. Rev. Lett. 115 087202Google Scholar

    [32]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 532

    [33]

    Shi Y G, Guo Y F, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N L, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024Google Scholar

    [34]

    Xi X, Berger H, Forro L, Shan L and Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar

    [35]

    Chen Z Y, Yuan H T, Xie Y W, Lu D, Inoue H, Hikita Y, Bell C and Hwang H Y 2016 Nano Lett. 16 6130Google Scholar

    [36]

    Wang Y, Liu X H, Burton J D, Jaswal S S, Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601Google Scholar

    [37]

    He X, Jin K J 2016 Phys. Rev. B 94 224107Google Scholar

    [38]

    Xia C L, Chen Y, Chen H H 2019 Phys. Rev. Mater. 3 054405Google Scholar

    [39]

    Xu T, Zhang J T, Zhu Y Q, Wang J, Shimada T, Kitamura T, Zhang T Y 2020 Nanoscale Horiz. 5 1400Google Scholar

    [40]

    Yao C J, Huang H F, Yao Y, Wu Y Z, Hao X 2021 J. Phys. Condens. Matter 33 145302Google Scholar

    [41]

    Shimada T, Minaguro K, Xu T, Wang J, Kitamura T 2020 Nanomaterials 10 732Google Scholar

    [42]

    Zhang J J, Guan J, Dong S, Yakobson B I 2019 J. Am. Chem. Soc. 141 15040Google Scholar

    [43]

    Fan Z Q, Jiang X W, Wei Z M, Luo J W, Li S S 2017 J. Phys. Chem. C 121 14373Google Scholar

    [44]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar

    [45]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [47]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [48]

    KingSmith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [49]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [50]

    Jiang X X, Feng Y X, Chen K Q, Tang L M 2020 J. Phys. Condens. Matter 32 105501Google Scholar

    [51]

    Zhong W, King-Smith R D, Vanderbilt D 1994 Phys. Rev. Lett. 72 3618Google Scholar

    [52]

    Zhu L Y, Lu Y, Wang L 2020 J. Appl. Phys. 127 014101Google Scholar

    [53]

    Soleimani M, Pourfath M 2020 Nanoscale 12 22688Google Scholar

    [54]

    Tran V, Yang L 2014 Phys. Rev. B 89 245407Google Scholar

    [55]

    Zhao X Y, Wei C M, Yang L, Chou M Y 2004 Phys. Rev. Lett. 92 236805Google Scholar

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 张凤, 廉森, 王明月, 陈雪, 殷继康, 何磊, 潘华卿, 任俊峰, 陈美娜. 掺杂、应变对析氢反应催化剂NiP2性能的影响. 物理学报, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [3] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [4] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性. 物理学报, 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [5] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [6] 石玉君, 张旭, 秦雷, 金魁, 袁洁, 朱北沂, 竺云. Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性. 物理学报, 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [7] 张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新. YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究. 物理学报, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [8] 任国浩, 裴钰, 吴云涛, 陈晓峰, 李焕英, 潘尚可. 铈离子掺杂浓度对氯化镧(LaCl3:Ce)闪烁晶体发光性能的影响. 物理学报, 2014, 63(3): 037802. doi: 10.7498/aps.63.037802
    [9] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [10] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [11] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究. 物理学报, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [12] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [13] 任国浩, 陈晓峰, 毛日华, 沈定中. 氟离子掺杂钨酸铅闪烁晶体的发光特性. 物理学报, 2010, 59(7): 4812-4817. doi: 10.7498/aps.59.4812
    [14] 赵庆勋, 马继奎, 耿波, 魏大勇, 关丽, 刘保亭. 氮氢混合气氛退火中氢对Bi4Ti3O12铁电性能的影响. 物理学报, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [15] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [16] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [17] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究. 物理学报, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [18] 万见峰, 费燕琼, 王健农. Fe和Co对Ni2MnGa合金(110)马氏体孪晶界面电子结构的影响. 物理学报, 2006, 55(5): 2444-2448. doi: 10.7498/aps.55.2444
    [19] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究. 物理学报, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [20] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性. 物理学报, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
计量
  • 文章访问数:  4228
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-05-20
  • 上网日期:  2022-09-18
  • 刊出日期:  2022-10-05

/

返回文章
返回