搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单根In掺杂ZnO纳米带场效应管的电学性质

唐欣月 高红 潘思明 孙鉴波 姚秀伟 张喜田

引用本文:
Citation:

单根In掺杂ZnO纳米带场效应管的电学性质

唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田

Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor

Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian
PDF
导出引用
  • 采用化学气相沉积法合成了In掺杂ZnO纳米带,并对其进行了X射线衍射、光致发光及透射电镜表征. 基于单根纳米带,采用廉价微栅模板法制备了背栅场效应管,利用半导体参数测试仪测量了场效应管的输出(Ids-Vds)和转移(Ids-Vgs)特性,得出相关电学参数,其中迁移率值为622 cm2·V-1·s-1,该值明显优于包括ZnO在内的大多数材料;讨论了迁移率提高的可能原因.
    Back-gate field effect transistors based on In-doped ZnO individual nanobelts have been fabricated using the low-cost microgrid template method. The output (Ids-Vds) and transfer (Ids-Vgs) characteristic curves for the transistors are measured, and the mobility is derived to be 622 cm2· V-1· s-1. This value is obviously superior to those for most of materials including pure ZnO in the literature, and possible influence factors have also been discussed.
    • 基金项目: 国家自然科学基金(批准号:11074060,51172058)、黑龙江省教育厅科学技术重点研究项目(批准号:12521z012)和黑龙江省研究生创新科研项目(2013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074060, 51172058), the Key Project of the Science Technology and Research of Education Bureau, Heilongjiang Province, China (Grant No. 12521z012), and the Graduate Students' Scientific Research Innovation Project of Heilongjiang Province, China (2013).
    [1]

    Chen K J, Hung F Y, Chang S J, Hu Z S 2009 Appl. Surf. Sci. 255 6308

    [2]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [3]

    Phillips J M, Cava R J, Thomas G A, Carter S A, Kwo J, Siegrist T, Krajewski J J, Marshall J H, Peck W F, Jr., Rapkine D H 1995 Appl. Phys. Lett. 67 2246

    [4]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [5]

    Su J, Li H F, Huang Y H, Xing X J, Zhao J, Zhang Y 2011 Nanoscale 3 2182

    [6]

    Ahmad M, Zhao J, Iqbal J, Miao W, Xie L, Mo R, Zhu J 2009 J. Phys. D: Appl. Phys. 42 165406

    [7]

    Li L M, Li C C, Zhang J, Du Z F, Zou B S, Yu H C, Wang Y G, Wang T H 2007 Nanotechnology 18 225504

    [8]

    Maeng J, Heo S, Jo G, Choe M, Kim S, Hwang H, Lee Takhee 2009 Nanotechnology 20 095203

    [9]

    Cha S N, Jang J E, Choi Y, Amaratunga G A J, Ho G W, Welland M E, Hasko D G, Kang D J, Kim J M 2006 Appl. Phys. Lett. 89 263102

    [10]

    Cheng Y, Xiong P, Fields L, Zheng J P, Yang R S, Wang Z L 2006 Appl. Phys. Lett. 89 093114

    [11]

    Kim D H, Cho N G, Kim H G, Cho W Y 2007 J. Electrochem. Soc. 154 H939

    [12]

    De D, Manongdo J, See S, Zhang V, Guloy A, Peng H 2013 Nanotechnology 24 025202

    [13]

    Li M, Zhang H Y, Guo C X, Xu J B, Fu X J 2009 Chin. Phys. B 18 1594

    [14]

    Jiang W, Gao H, Xu L L 2012 Chin. Phys. Lett. 29 037102

    [15]

    Lang Y, Gao H, Jiang W, Xu L L, Hou H T 2012 Sens. Actuators A 174 43

    [16]

    Li M J, Gao H, Li J L, Wen J, Li K, Zhang W G 2013 Acta Phys. Sin. 62 187302(in Chinese) [李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光 2013 物理学报 62 187302]

    [17]

    Yuan Z, Gao H, Xu LL, Chen T T, Lang Y 2012 Acta Phys. Sin. 61 057201(in Chinese) [袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖 2012 物理学报 61 057201]

    [18]

    Zhou J, Gu Y D, Hu Y F, Mai W J, Yeh P H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103

    [19]

    Wan Q, Huang J, Lu A, Wang T H 2008 Appl. Phys. Lett. 93 103109

    [20]

    Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004 Chem. Phys. Lett. 387 466

    [21]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [22]

    Chen Y T, Cheng C L, Chen Y F 2008 Nanotechnology. 19 445707

    [23]

    Park W I, Kim J S, Yi G C, Bae M H, Lee H J 2004 Appl. Phys. Lett. 85 5052

    [24]

    Ma R M, Dai L, Huo H B, Yang W Q, Qin G G 2006 Appl. Phys. Lett. 89 203120

    [25]

    Fan Z Y, Wang D W, Chang P C, Tseng W Y, Lu J G 2004 Appl. Phys. Lett. 85 5923

    [26]

    Hsu C L, Tsai T Y 2011 J. Electrochem. Soc. 158 K20

    [27]

    Wu Y, Girgis E, Ström V, Voit W, Belova L, Rao K V 2011 Phys. Status Solidi A 208 206

    [28]

    Li S S, Zhang Z, Huang J Z, Feng X P, Liu R X 2011 Acta Phys. Sin. 60 097405(in Chinese) [李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜 2011 物理学报 60 097405]

    [29]

    Shinde S S, Shinde P S, Bhosale C H, Rajpure K Y 2008 J. D: Appl. Phys. 41 105109

    [30]

    Fritz S E, Kelley T W, Frisbie C D 2005 J. Phys. Chem. B 109 10574

    [31]

    Yang H, Yang C, Kim S H, Jang M, Park C E 2010 ACS Appl. Mat. Interfaces 2 391

  • [1]

    Chen K J, Hung F Y, Chang S J, Hu Z S 2009 Appl. Surf. Sci. 255 6308

    [2]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [3]

    Phillips J M, Cava R J, Thomas G A, Carter S A, Kwo J, Siegrist T, Krajewski J J, Marshall J H, Peck W F, Jr., Rapkine D H 1995 Appl. Phys. Lett. 67 2246

    [4]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [5]

    Su J, Li H F, Huang Y H, Xing X J, Zhao J, Zhang Y 2011 Nanoscale 3 2182

    [6]

    Ahmad M, Zhao J, Iqbal J, Miao W, Xie L, Mo R, Zhu J 2009 J. Phys. D: Appl. Phys. 42 165406

    [7]

    Li L M, Li C C, Zhang J, Du Z F, Zou B S, Yu H C, Wang Y G, Wang T H 2007 Nanotechnology 18 225504

    [8]

    Maeng J, Heo S, Jo G, Choe M, Kim S, Hwang H, Lee Takhee 2009 Nanotechnology 20 095203

    [9]

    Cha S N, Jang J E, Choi Y, Amaratunga G A J, Ho G W, Welland M E, Hasko D G, Kang D J, Kim J M 2006 Appl. Phys. Lett. 89 263102

    [10]

    Cheng Y, Xiong P, Fields L, Zheng J P, Yang R S, Wang Z L 2006 Appl. Phys. Lett. 89 093114

    [11]

    Kim D H, Cho N G, Kim H G, Cho W Y 2007 J. Electrochem. Soc. 154 H939

    [12]

    De D, Manongdo J, See S, Zhang V, Guloy A, Peng H 2013 Nanotechnology 24 025202

    [13]

    Li M, Zhang H Y, Guo C X, Xu J B, Fu X J 2009 Chin. Phys. B 18 1594

    [14]

    Jiang W, Gao H, Xu L L 2012 Chin. Phys. Lett. 29 037102

    [15]

    Lang Y, Gao H, Jiang W, Xu L L, Hou H T 2012 Sens. Actuators A 174 43

    [16]

    Li M J, Gao H, Li J L, Wen J, Li K, Zhang W G 2013 Acta Phys. Sin. 62 187302(in Chinese) [李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光 2013 物理学报 62 187302]

    [17]

    Yuan Z, Gao H, Xu LL, Chen T T, Lang Y 2012 Acta Phys. Sin. 61 057201(in Chinese) [袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖 2012 物理学报 61 057201]

    [18]

    Zhou J, Gu Y D, Hu Y F, Mai W J, Yeh P H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103

    [19]

    Wan Q, Huang J, Lu A, Wang T H 2008 Appl. Phys. Lett. 93 103109

    [20]

    Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004 Chem. Phys. Lett. 387 466

    [21]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [22]

    Chen Y T, Cheng C L, Chen Y F 2008 Nanotechnology. 19 445707

    [23]

    Park W I, Kim J S, Yi G C, Bae M H, Lee H J 2004 Appl. Phys. Lett. 85 5052

    [24]

    Ma R M, Dai L, Huo H B, Yang W Q, Qin G G 2006 Appl. Phys. Lett. 89 203120

    [25]

    Fan Z Y, Wang D W, Chang P C, Tseng W Y, Lu J G 2004 Appl. Phys. Lett. 85 5923

    [26]

    Hsu C L, Tsai T Y 2011 J. Electrochem. Soc. 158 K20

    [27]

    Wu Y, Girgis E, Ström V, Voit W, Belova L, Rao K V 2011 Phys. Status Solidi A 208 206

    [28]

    Li S S, Zhang Z, Huang J Z, Feng X P, Liu R X 2011 Acta Phys. Sin. 60 097405(in Chinese) [李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜 2011 物理学报 60 097405]

    [29]

    Shinde S S, Shinde P S, Bhosale C H, Rajpure K Y 2008 J. D: Appl. Phys. 41 105109

    [30]

    Fritz S E, Kelley T W, Frisbie C D 2005 J. Phys. Chem. B 109 10574

    [31]

    Yang H, Yang C, Kim S H, Jang M, Park C E 2010 ACS Appl. Mat. Interfaces 2 391

  • [1] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性. 物理学报, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [2] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [3] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [4] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [5] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [6] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [7] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [8] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [9] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [10] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒. 物理学报, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [11] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [13] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究. 物理学报, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [14] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [15] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究. 物理学报, 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [16] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [17] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [18] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [19] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [20] 杨秀健, 施朝淑, 许小亮. 纳米ZnO和ZnO∶Eu3+的表面效应及发光特性. 物理学报, 2002, 51(12): 2871-2874. doi: 10.7498/aps.51.2871
计量
  • 文章访问数:  2751
  • PDF下载量:  2524
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-05-24
  • 刊出日期:  2014-10-05

单根In掺杂ZnO纳米带场效应管的电学性质

  • 1. 光电带隙材料省部共建教育部重点实验室, 哈尔滨师范大学物理与电子工程学院, 哈尔滨 150025
    基金项目: 国家自然科学基金(批准号:11074060,51172058)、黑龙江省教育厅科学技术重点研究项目(批准号:12521z012)和黑龙江省研究生创新科研项目(2013)资助的课题.

摘要: 采用化学气相沉积法合成了In掺杂ZnO纳米带,并对其进行了X射线衍射、光致发光及透射电镜表征. 基于单根纳米带,采用廉价微栅模板法制备了背栅场效应管,利用半导体参数测试仪测量了场效应管的输出(Ids-Vds)和转移(Ids-Vgs)特性,得出相关电学参数,其中迁移率值为622 cm2·V-1·s-1,该值明显优于包括ZnO在内的大多数材料;讨论了迁移率提高的可能原因.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回