搜索

x
中国物理学会期刊

纳米VO2/ZnO复合薄膜的热致变色特性研究

CSTR: 32037.14.aps.60.098104

Study on thermochromic properties of VO2/ZnO nanocrystalline composite films

CSTR: 32037.14.aps.60.098104
PDF
导出引用
  • 为提高VO2薄膜的热致变色性能,采用纳米结构和复合结构二者相结合的方法,通过磁控溅射技术先在玻璃衬底上制备高(002)取向ZnO薄膜,再在ZnO层上室温沉积钒金属薄膜,最后经热氧化处理获得纳米结构VO2/ZnO复合薄膜.利用变温拉曼光谱观察分析了VO2/ZnO薄膜相变前后的晶格畸变和键态的演变过程,讨论了薄膜的结构与热致红外开关特性和相变温度的内在关系.结果显示,与相同条件获得的同厚度的单层VO2薄膜相比,纳米VO 

    Based on thermo-optical phase transition effect, VO2/ZnO nanostructure composite films are designed and successfully prepared by depositing ZnO films with high (002) orientation on soda-lime glass substrates first, and then the vanadium dioxide films are fabricated by depositing vanadium metal films on ZnO films at room temperature and thermal oxidation treatment. The thermochromic properties of VO2/ZnO nanocomposite films are measured and compared with the single-layer VO2 films on SiO2 glass substrates with the same thickness. The lattice distortion and bonding state of the VO2/ZnO nanocomposite films before and after phase transition are observed and analyzed by Raman spectroscopy at the different temperatures. The relations of infrared switching properties and phase transition temperature to nanostructure and film thickness are discussed. The results show that the thermochromic optical properties are improved significantly. VO2/ZnO nano-composite films have high (002) orientation so that the infrared transmittance before phase transition is more than twice as large as that after phase transition, and the width of thermal hysteresis is narrowed by about 5℃ and phase transition temperature is decreased about 8℃. It suggestes that the nano-composite films can significantly reduce the phase transition temperature and enhance the infrared light switch modulation capabilities of VO2 thin films.

     

    目录