搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透明导电ZnO:Al/Cu网格复合膜及其电加热性能

陆杨丹 吕建国 杨汝琪 陆波静 朱丽萍 叶志镇

引用本文:
Citation:

透明导电ZnO:Al/Cu网格复合膜及其电加热性能

陆杨丹, 吕建国, 杨汝琪, 陆波静, 朱丽萍, 叶志镇

Transparent conductive ZnO:Al/Cu mesh composite film and its electric heating performance

Lu Yang-Dan, Lü Jian-Guo, Yang Ru-Qi, Lu Bo-Jing, Zhu Li-Ping, Ye Zhi-Zhen
PDF
HTML
导出引用
  • 为获得更优性能的无铟透明导电薄膜, 需要在不损害薄膜透光性的同时提高导电性能. 本文采用紫外光刻和磁控溅射, 在Cu网格的表面覆盖Al掺杂的ZnO (ZnO:Al, AZO) 薄膜, 制备透明导电的AZO/Cu网格复合膜. Cu网格的线宽低至15 μm, 透光性极高, 并且导电性能得到大幅度改善, 覆盖稳定的透明导电AZO薄膜为Cu网格提供屏障保护. 通过六边形网格形状的设计和工艺参数的优化, 制备出的复合膜的可见光波段透过率达到86.4%, 方块电阻降低至4.9 Ω/sq, 同时实现了高透光性和高导电性. 成本低廉、光电性能好且环境稳定的AZO/Cu网格复合膜在透明电子领域具有广泛的应用前景, 将其用于透明电加热膜, 可在较低电压下实现快速、均匀、稳定的电热响应, 有望作为透明的面发热膜应用于除雾除霜玻璃、热疗贴膜等.
    Transparent conductive films (TCFs) play an indispensable role in optoelectronic devices because of their high conductivity and high optical transmittance. In order to obtain indium-free transparent conductive films with better performance, we need to improve the conductivity, while not damaging the transmittance. Metal mesh is highly conductive but prone to oxidation and abrasion, while transparent conductive oxide (TCO) is stable but less conductive. Thus, we composite the metal mesh with the stable TCO to achieve complementary advantages. In this work, we fabricate a hexagonal Cu mesh and then cover the Cu mesh with Al-doped ZnO (AZO) film by using lithography and magnetron sputtering. The line width and length of mesh are 15 µm and 150 µm, respectively, which are not visible to the naked eye. The effect of AZO growth temperature on the properties of such AZO/Cu mesh composite film is studied and the optimal temperature is 300 ℃. By designing the mesh and optimizing the process, the transmittance (400–800 nm), sheet resistance and FoM of AZO/ Cu mesh composite film reach 86.4%, 4.9 Ω/sq and 4.73 × 10–2 Ω–1, respectively, thus possessing both transparent and conductive property. Because of its low cost, competitive optoelectronic performance and stability, the potential applications of AZO/Cu mesh composite film in transparent electronics are fantastic. When used as a transparent conductor to connect LED to 3 V DC power, the luminance of LED in series with AZO/Cu mesh composite film is lighter than that of AZO film and Cu mesh. According to the Ohmic heating effect of electric current passing through a conductor, AZO/Cu mesh composite film can be designed as electric heating film. At low voltage safe for human body, AZO/Cu mesh composite film can implement fast, uniform and stabile heat. In the cyclic electric heating test, the AZO/Cu mesh composite film can be heated rapidly to 175 ℃ all the time, showing a fast temperature response and stable cyclic performance. More importantly, the AZO is itself transparent and conductive and prevents the metal from oxidizing effectively, thus ensuring the overall performance and maintaining the electric heating response. The experimental result and simulation application show that the AZO/Cu mesh composite film has a great potential application in transparent and heating film for defogging and defrosting glass.
      通信作者: 吕建国, lujianguo@zju.edu.cn ; 叶志镇, yezz@zju.edu.cn
    • 基金项目: 浙江省重点研发计划(批准号: 2021C01030)和浙江省尖兵领雁计划(批准号: 2021C01SA301612)资助的课题.
      Corresponding author: Lü Jian-Guo, lujianguo@zju.edu.cn ; Ye Zhi-Zhen, yezz@zju.edu.cn
    • Funds: Project supported by the Zhejiang Provincial Key Research and Development Program, China (Grant No. 2021C01030) and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province, China (Grant No. 2021C01SA301612).
    [1]

    刘宏燕, 颜悦, 望咏林, 伍建华, 张官理, 厉蕾 2015 航空材料学报 35 63Google Scholar

    Liu H Y, Yan Y, Wang Y L, Wu J H, Zhang G L, Li L 2015 J. Aeronautical Mater. 35 63Google Scholar

    [2]

    刘世丽, 辛智青, 李修, 方一, 李亚玲, 莫黎昕, 李路海 2015 功能材料与器件学报 21 13

    Liu S L, Xin Z Q, Li X, Fang Y, Li Y L, Mo L X, Li L H 2015 J. Functional Mater. Dev. 21 13

    [3]

    杨桢林, 费纯纯, 成程, 张宏梅 2019 发光学报 40 238Google Scholar

    Yang Z L, Fei C C, Cheng C, Zhang H M 2019 Chin. J. Luminescence 40 238Google Scholar

    [4]

    Hautcoeur J, Colombel F, Himdi M, Castel X, Cruz E M 2013 IEEE Antennas Wirel. Propag. Lett. 12 933Google Scholar

    [5]

    Zhao Z Y, Xia K Q, Hou Y, Zhang Q H, Ye Z Z, Lu J G 2021 Chem. Soc. Rev. 50 12702Google Scholar

    [6]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [7]

    廖亚琴, 李愿杰, 黄添懋 2014 东方电气评论 28 13Google Scholar

    Liao Y Q, Li Y J, Huang T M 2014 Dongfang Electric. Review 28 13Google Scholar

    [8]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705Google Scholar

    [9]

    Lu J G, Ye Z Z, Zeng Y J, Zhu L P, Wang L, Yuan J, Zhao B H, Liang Q L 2006 J. Appl. Phys. 100 073714Google Scholar

    [10]

    李佳, 杨晔, 朱科, 魏铁锋, 王木钦, 朱超挺, 宋伟杰 2015 中国科学: 技术科学 45 941Google Scholar

    Li J, Yang Y, Zhu K, Wei T F, Wang M Q, Zhu C T, Song W J 2015 Sci. Sin. Technol. 45 941Google Scholar

    [11]

    Jiang Q J, Lu J G, Yuan Y L, Cai H, Zhang J, Deng N, Ye Z Z 2014 Mater. Lett. 123 14Google Scholar

    [12]

    Gong L, Lu J, Ye Z 2011 Thin Solid Films 519 3870Google Scholar

    [13]

    Wang Y P, Lu J G, Bie X, Ye Z Z, Li X, Song D, Zhao X Y, Ye W Y 2011 Appl. Surf. Sci. 257 5966Google Scholar

    [14]

    Qin L H, Yan Y Q, Yu G, Zhang Z Y, Zhama T, Sun H 2021 Materials (Basel) 14 4097Google Scholar

    [15]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar

    [16]

    Afshinmanesh F, Curto A G, Milaninia K M, van Hulst N F, Brongersma M L 2014 Nano Lett. 14 5068Google Scholar

    [17]

    Jang C, Jiang Q J, Lu J G, Ye Z Z 2015 J. Mater. Sci. Technol. 31 1108Google Scholar

    [18]

    Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo L J, Li W D 2016 Small 12 3021Google Scholar

    [19]

    Liu W, Fang Y, Xu Y F, Li X, Li L H 2014 Sci. China Tech. Sci. 57 2536Google Scholar

    [20]

    Choi K H, Kim J Y, Lee Y S, Kim H J 1999 Thin Solid Films 341 152Google Scholar

    [21]

    杨田林, 张之圣, 宋淑梅, 李延辉, 吕茂水, 韩圣浩, 庞智勇 2009 太阳能学报 30 1209Google Scholar

    Yang T L, Zhang Z S, Song S M, Li Y H, Lv M S, Han S H, Pang Z Y 2009 Acta Energiae Solaris Sinica 30 1209Google Scholar

    [22]

    Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505Google Scholar

    [23]

    Sahu D R, Huang J L 2007 Microelectron. J. 38 299Google Scholar

    [24]

    Chen Z, Li W, Li R, Zhang Y, Xu G, Cheng H 2013 Langmuir 29 13836Google Scholar

    [25]

    Tran N H, Duong T H, Kim H C 2017 Sci. Rep. 7 15093Google Scholar

    [26]

    Jiu J, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K 2012 J. Mater. Chem. 22 23561Google Scholar

    [27]

    Li L, Fan Q, Xue H, Zhang S, Wu S, He Z, Wang J 2020 Rsc Adv. 10 9894Google Scholar

    [28]

    Zhu C, Tan R, Song W, Ouyang B, Cai M, Zhou S, Lu Y, Li N 2018 Mater. Res. Express. 5 066427Google Scholar

    [29]

    Zhou W X, Chen J, Li Y, Wang D B, Chen J Y, Feng X M, Huang Z D, Liu R Q, Lin X J, Zhang H M, Mi B X, Ma Y W 2016 ACS Appl. Mater. Interfaces 8 11122Google Scholar

    [30]

    Kang J, Kim H, Kim K S, Lee S K, Bae S, Ahn J H, Kim Y J, Choi J B, Hong B H 2011 Nano Lett. 11 5154Google Scholar

    [31]

    Kim Y, Lee H R, Saito T, Nishi Y 2017 Appl. Phys. Lett. 110 153301Google Scholar

    [32]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [33]

    Kim Y H, Sachse C, Machala M L, May C, Müller-Meskamp L, Leo K 2011 Adv. Funct. Mater. 21 1076Google Scholar

    [34]

    Li H, Liu Y, Su A, Wang J, Duan Y 2019 Sci. Rep. 9 17998Google Scholar

    [35]

    Kim T H, Choi B H, Park J S, Lee S M, Lee Y S, Park L S 2010 Mol. Cryst. Liq. Cryst. 520 485Google Scholar

    [36]

    Acosta M, Mendez-Gamboa J, Riech I, Acosta C, Zambrano M 2019 Superlattices Microstruct. 127 49Google Scholar

  • 图 1  AZO/Cu网格复合薄膜的(a)—(d) 制备和(e) 电加热测试示意图

    Fig. 1.  Schematic illustration of the (a)–(d) fabrication and (e) electric heating test of AZO/Cu mesh composite film.

    图 2  不同AZO生长温度下制备的AZO/Cu网格复合膜的XRD图

    Fig. 2.  XRD patterns of AZO/Cu mesh composite films deposited at different AZO growth temperatures.

    图 3  在(a) 100 ℃, (b) 200 ℃, (c) 300 ℃, (d) 400 ℃生长AZO后制备的AZO/Cu网格复合膜的SEM图; 300 ℃生长AZO后制备的AZO/Cu网格复合膜的(e)光学显微镜图和(f)照片

    Fig. 3.  SEM images of AZO/Cu mesh composite films deposited at different AZO growth temperatures of (a) 100 ℃, (b) 200 ℃, (c) 300 ℃, (d) 400 ℃; (e) microscope image and (f) photo of AZO/Cu mesh composite film when AZO is grown at 300 ℃.

    图 4  (a) AZO/Cu网格复合膜的电阻率、霍尔迁移率、载流子浓度与AZO生长温度的关系; (b) AZO/Cu网格复合膜的透射光谱 (AZO生长温度为300 ℃); (c) AZO/Cu网格复合膜的平均透过率(400—800 nm)、品质因数与AZO生长温度的关系; (d) 现有TCFs的性能对比

    Fig. 4.  (a) Resistivity, Hall mobility and carrier concentrations of AZO/Cu mesh composite films as a function of AZO growth temperatures; (b) transmission spectrum of AZO/Cu mesh composite film (AZO is grown at 300 ℃); (c) average transmittance (400–800 nm) and FoM of AZO/Cu mesh composite film as a function of AZO growth temperatures; (d) performance comparison of TCFs.

    图 5  (a)不同厚度的AZO/Cu网格复合膜在5 V下的温度响应; (b)分别与AZO透明电极、AZO/Cu网格复合透明电极、Cu网格透明电极串联的LED在3 V电压下的发光亮度

    Fig. 5.  (a) Temperature response of AZO/Cu mesh composite films of different thickness at 5 V; (b) luminance of LED in series with AZO, AZO/Cu mesh composite film, and Cu mesh under 3 V.

    图 6  红外相机拍摄AZO/Cu网格复合膜表面温度分布的(a)装置图及所得到的(b)红外热分布图; AZO/Cu网格复合膜与单层Cu网格、单层AZO膜在5 V下的(c)温度响应和(d)循环性能

    Fig. 6.  (a) Measurement setup and (b) the thermal radiation of AZO/Cu mesh composite film measured with an infrared camera; (c) temperature response and (d) cyclic performance of AZO/Cu mesh composite film, Cu mesh and AZO film at 5 V.

  • [1]

    刘宏燕, 颜悦, 望咏林, 伍建华, 张官理, 厉蕾 2015 航空材料学报 35 63Google Scholar

    Liu H Y, Yan Y, Wang Y L, Wu J H, Zhang G L, Li L 2015 J. Aeronautical Mater. 35 63Google Scholar

    [2]

    刘世丽, 辛智青, 李修, 方一, 李亚玲, 莫黎昕, 李路海 2015 功能材料与器件学报 21 13

    Liu S L, Xin Z Q, Li X, Fang Y, Li Y L, Mo L X, Li L H 2015 J. Functional Mater. Dev. 21 13

    [3]

    杨桢林, 费纯纯, 成程, 张宏梅 2019 发光学报 40 238Google Scholar

    Yang Z L, Fei C C, Cheng C, Zhang H M 2019 Chin. J. Luminescence 40 238Google Scholar

    [4]

    Hautcoeur J, Colombel F, Himdi M, Castel X, Cruz E M 2013 IEEE Antennas Wirel. Propag. Lett. 12 933Google Scholar

    [5]

    Zhao Z Y, Xia K Q, Hou Y, Zhang Q H, Ye Z Z, Lu J G 2021 Chem. Soc. Rev. 50 12702Google Scholar

    [6]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631Google Scholar

    [7]

    廖亚琴, 李愿杰, 黄添懋 2014 东方电气评论 28 13Google Scholar

    Liao Y Q, Li Y J, Huang T M 2014 Dongfang Electric. Review 28 13Google Scholar

    [8]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H 2007 J. Appl. Phys. 101 083705Google Scholar

    [9]

    Lu J G, Ye Z Z, Zeng Y J, Zhu L P, Wang L, Yuan J, Zhao B H, Liang Q L 2006 J. Appl. Phys. 100 073714Google Scholar

    [10]

    李佳, 杨晔, 朱科, 魏铁锋, 王木钦, 朱超挺, 宋伟杰 2015 中国科学: 技术科学 45 941Google Scholar

    Li J, Yang Y, Zhu K, Wei T F, Wang M Q, Zhu C T, Song W J 2015 Sci. Sin. Technol. 45 941Google Scholar

    [11]

    Jiang Q J, Lu J G, Yuan Y L, Cai H, Zhang J, Deng N, Ye Z Z 2014 Mater. Lett. 123 14Google Scholar

    [12]

    Gong L, Lu J, Ye Z 2011 Thin Solid Films 519 3870Google Scholar

    [13]

    Wang Y P, Lu J G, Bie X, Ye Z Z, Li X, Song D, Zhao X Y, Ye W Y 2011 Appl. Surf. Sci. 257 5966Google Scholar

    [14]

    Qin L H, Yan Y Q, Yu G, Zhang Z Y, Zhama T, Sun H 2021 Materials (Basel) 14 4097Google Scholar

    [15]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar

    [16]

    Afshinmanesh F, Curto A G, Milaninia K M, van Hulst N F, Brongersma M L 2014 Nano Lett. 14 5068Google Scholar

    [17]

    Jang C, Jiang Q J, Lu J G, Ye Z Z 2015 J. Mater. Sci. Technol. 31 1108Google Scholar

    [18]

    Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo L J, Li W D 2016 Small 12 3021Google Scholar

    [19]

    Liu W, Fang Y, Xu Y F, Li X, Li L H 2014 Sci. China Tech. Sci. 57 2536Google Scholar

    [20]

    Choi K H, Kim J Y, Lee Y S, Kim H J 1999 Thin Solid Films 341 152Google Scholar

    [21]

    杨田林, 张之圣, 宋淑梅, 李延辉, 吕茂水, 韩圣浩, 庞智勇 2009 太阳能学报 30 1209Google Scholar

    Yang T L, Zhang Z S, Song S M, Li Y H, Lv M S, Han S H, Pang Z Y 2009 Acta Energiae Solaris Sinica 30 1209Google Scholar

    [22]

    Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505Google Scholar

    [23]

    Sahu D R, Huang J L 2007 Microelectron. J. 38 299Google Scholar

    [24]

    Chen Z, Li W, Li R, Zhang Y, Xu G, Cheng H 2013 Langmuir 29 13836Google Scholar

    [25]

    Tran N H, Duong T H, Kim H C 2017 Sci. Rep. 7 15093Google Scholar

    [26]

    Jiu J, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K 2012 J. Mater. Chem. 22 23561Google Scholar

    [27]

    Li L, Fan Q, Xue H, Zhang S, Wu S, He Z, Wang J 2020 Rsc Adv. 10 9894Google Scholar

    [28]

    Zhu C, Tan R, Song W, Ouyang B, Cai M, Zhou S, Lu Y, Li N 2018 Mater. Res. Express. 5 066427Google Scholar

    [29]

    Zhou W X, Chen J, Li Y, Wang D B, Chen J Y, Feng X M, Huang Z D, Liu R Q, Lin X J, Zhang H M, Mi B X, Ma Y W 2016 ACS Appl. Mater. Interfaces 8 11122Google Scholar

    [30]

    Kang J, Kim H, Kim K S, Lee S K, Bae S, Ahn J H, Kim Y J, Choi J B, Hong B H 2011 Nano Lett. 11 5154Google Scholar

    [31]

    Kim Y, Lee H R, Saito T, Nishi Y 2017 Appl. Phys. Lett. 110 153301Google Scholar

    [32]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [33]

    Kim Y H, Sachse C, Machala M L, May C, Müller-Meskamp L, Leo K 2011 Adv. Funct. Mater. 21 1076Google Scholar

    [34]

    Li H, Liu Y, Su A, Wang J, Duan Y 2019 Sci. Rep. 9 17998Google Scholar

    [35]

    Kim T H, Choi B H, Park J S, Lee S M, Lee Y S, Park L S 2010 Mol. Cryst. Liq. Cryst. 520 485Google Scholar

    [36]

    Acosta M, Mendez-Gamboa J, Riech I, Acosta C, Zambrano M 2019 Superlattices Microstruct. 127 49Google Scholar

  • [1] 廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起. 基于裂纹模板法的金属网格透明导电薄膜制备及性能改进. 物理学报, 2022, 71(15): 154201. doi: 10.7498/aps.71.20220101
    [2] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [3] 吴静静, 唐鑫, 龙飞, 唐壁玉. GGA+U方法研究ZnO孪晶界对VZn-NO-H复合体对p型导电性的影响. 物理学报, 2017, 66(13): 137101. doi: 10.7498/aps.66.137101
    [4] 李玉金, 元秀华, 赵茗, 王运河. 环形ZnO薄膜谐振器的横模抑制与测试分析(已撤稿. 物理学报, 2015, 64(22): 224601. doi: 10.7498/aps.64.224601
    [5] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响. 物理学报, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [6] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [8] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [9] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [10] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [11] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [12] 陈兆权, 刘明海, 刘玉萍, 陈伟, 罗志清, 胡希伟. PECVD制备AZO(ZnO:Al)透明导电薄膜. 物理学报, 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [13] 吴臣国, 沈杰, 李栋, 马国宏. 掺钼ZnO透明导电薄膜的太赫兹电磁波传输性质. 物理学报, 2009, 58(12): 8623-8629. doi: 10.7498/aps.58.8623
    [14] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响. 物理学报, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [17] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [19] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [20] 袁洪涛, 张 跃, 谷景华. 原位生长高度定向ZnO晶须. 物理学报, 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
计量
  • 文章访问数:  3495
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-04-20
  • 上网日期:  2022-09-05
  • 刊出日期:  2022-09-20

/

返回文章
返回