搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铯原子气室反抽运光增强相干蓝光

黄文艺 杨保东 樊健 王军民 周海涛

引用本文:
Citation:

基于铯原子气室反抽运光增强相干蓝光

黄文艺, 杨保东, 樊健, 王军民, 周海涛

Coherent blue light enhancement via repumping laser in cesium vapor

Huang Wen-Yi, Yang Bao-Dong, Fan Jian, Wang Jun-Min, Zhou Hai-Tao
PDF
HTML
导出引用
  • 基于铯原子菱形能级6S1/2 (F = 4)→6P3/2 (F' = 5)→6D5/2 (F'' = 6)→7P3/2 (F' = 5)→6S1/2 (F = 4)系统, 在波长为852 nm (6S1/2→6P3/2)和917 nm (6P3/2→6D5/2)两红外抽运激光共同激励下, 通过四波混频过程频率上转换产生了波长为455 nm (7P3/2→6S1/2)的相干、准直蓝光. 实验上详细研究了抽运光偏振组合、功率、铯原子气室温度对蓝光强度的影响. 在此基础上, 通过增加了一束波长为894 nm (6S1/2 (F = 3)→6P1/2 (F' = 3, 4))的反抽运激光, 将更多的原子抽运回基态6S1/2 (F = 4)超精细能级, 显著增加了相干蓝光功率的输出, 在水下自由空间光通信领域等有一定的应用价值.
    We demonstrate the generation of coherent and collimated blue light (CBL) based on cesium (Cs) 6S1/2(F = 4)→6P3/2(F' = 5)→6D5/2(F'' = 6)→7P3/2(F' = 5)→6S1/2(F = 4) diamond-type atomic system in a heated vapor cell. Two infrared pumping lasers with wavelengths at 852 nm (6S1/2→6P3/2) and 917 nm (6P3/2→6D5/2), provide step-wise excitation to the 6D5/2 excited state, and induce strong two-photon coherence between the 6S1/2 state and 6D5/2 state. The atoms undergo a double cascade accompanied with the amplified spontaneous emission at 15.1 μm via the 7P3/2 intermediate excited state, and produce a beam of 455 nm (7P3/2→6S1/2) CBL with highly spatiotemporal coherence through a parametric four-wave mixing process. We investigate the influence of experimental parameters such as polarization combination of the two pumping lasers, and their power, and the temperature of Cs vapor cell on the CBL. Especially, we add a beam of 894 nm laser operating at the 6S1/2(F = 3) →6P1/2 transition as repumping laser, which can pump atoms back to the 6S1/2(F = 4) state from the 6S1/2(F = 3) state, thus significantly improving the power of CBL. This technique of the CBL enhancement via optical pumping is also useful for the other alkali metal atoms.
      通信作者: 杨保东, ybd@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975102, 11974226)、山西省自然科学基金(批准号: 20210302123437)、国家重点研发计划(批准号: 2017YFA0304502) 和山西省高等学校科技创新项目(批准号: 2019L0101) 资助的课题.
      Corresponding author: Yang Bao-Dong, ybd@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975102, 11974226), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123437), the National Key Research and Development Program of China (Grant No. 2017YFA0304502), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0101).
    [1]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [2]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818Google Scholar

    [3]

    Vanier J 2005 Appl. Phys. B 81 421Google Scholar

    [4]

    Akulshin A M, Perrella C, Truong G W, McLean R J, Luiten A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245503Google Scholar

    [5]

    冯啸天, 袁春华, 陈丽清, 陈洁菲, 张可烨, 张卫平 2018 物理学报 67 164204Google Scholar

    Feng X T, Yuan C H, Chen L Q, Chen J F, Zhang K Y, Zhang W P 2018 Acta Phys. Sin. 67 164204Google Scholar

    [6]

    Scully M O, Fleischhauer M 1994 Science 263 337Google Scholar

    [7]

    Akulshin A M, Bustos F P, Budker D 2018 Opt. Lett. 43 5279Google Scholar

    [8]

    Lam M, Pal S B, Vogt T, Gross C, Kiffner M, Li W H 2019 Opt. Lett. 44 2931Google Scholar

    [9]

    Gai B D, Hu S, Chu J Z, Wang P Y, Cai X L, Guo J W 2021 OSA Continuum. 4 2410Google Scholar

    [10]

    Zibrov A S, Lukin M D, Hollberg L, Scully M O 2002 2002 Phys. Rev. A 65 051801(RGoogle Scholar

    [11]

    Meijer T, White J D, Smeets B, Jeppesen M, Scholten R E 2006 Opt. Lett. 31 1002Google Scholar

    [12]

    Akulshin A M, McLean R J, Sidorov A I, Hannaford P 2009 Opt. Express 17 22861Google Scholar

    [13]

    Kienlen M B, Holte N T, Dassonville H A, et al. 2013 Am. J. Phys. 81 442Google Scholar

    [14]

    Akulshin A M, Budker D, McLean R J 2014 Opt. Lett. 39 845Google Scholar

    [15]

    Sebbag Y, Barash Y, Levy U 2019 Opt. Lett. 44 971Google Scholar

    [16]

    Vernier A, Franke-Arnold S, Riis E, Arnold A S 2010 Opt. Express 18 17020Google Scholar

    [17]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401Google Scholar

    [18]

    Cao R, Gai B D, Yang J, et al. 2015 Chin. Opt. Lett. 13 121903Google Scholar

    [19]

    Prajapati N, Akulshin A M, Novikova I 2018 J. Opt. Soc. Am. B 35 1133Google Scholar

    [20]

    Moreno M P, Almeida A A C, Vianna S S 2019 Phys. Rev. A 99 043410Google Scholar

    [21]

    Offer R F, Conway J W C, Riis E, Franke-Arnold S, Arnold A S 2016 Opt. Lett. 41 2177Google Scholar

    [22]

    Yuan J P, Liu H, Wang L R, Xiao L T, Jia S T 2021 Opt. Express 29 4858Google Scholar

    [23]

    Akulshin A M, Budker D, Mclean R J 2017 J. Opt. Soc. Am. B 34 1016Google Scholar

    [24]

    Schultz J T, Abend S, Döring D, Debs J E, Altin P A, White J D, Robins N P, Close J D 2009 Opt. Lett. 34 2321Google Scholar

    [25]

    Zhang Y Y, Wu J Z, He Y Y, Zhang Y, Hu Y D, Zhang J X, Zhu S Y 2020 Opt. Express 28 17723Google Scholar

    [26]

    Wu J Z, Xu Y H, Dong R G, Zhang J X 2021 Opt. Lett. 46 3119Google Scholar

    [27]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803Google Scholar

    [28]

    Yang B D, Zhang J F, Wang J M 2019 Chin. Opt. Lett. 17 093001Google Scholar

  • 图 1  与实验相关的133Cs原子能级图

    Fig. 1.  Energy levels of 133Cs involved in the 6S1/2-6D5/2 two-colour excitation and parametric FWM processes.

    图 2  反抽运光增强相干455 nm蓝光的实验装置示意图(PBS, 立方偏振棱镜; HWP, 半波片; QWP, 四分之一波片; DM, 双色镜; M, 平面反射镜; Cs cell, 铯原子气室; Filter, 蓝光滤色片; PD, 光电探测器; PMT, 光电倍增管; Spectrometer, 光纤光谱仪)

    Fig. 2.  Schematic of experimental setup for coherent 455 nm blue light enhancement via repumping laser (PBS, polarizing beam splitter; HWP, half wave plate; QWP, quarter wave plate; DM, dichroic mirror; M, mirror; Cs cell, cesium vapor cell; Filter, 455 nm blue filter; PD, photo diode; PMT, photomultiplier tube; Spectrometer, optical fiber spectrometer).

    图 3  光谱仪探测到的相干455 nm蓝光信号, 插图为其通过二维光栅的衍射图像

    Fig. 3.  Coherent 455 nm blue light observed by an optical fiber spectrometer, and the inset shows the interference pattern of the 455 nm blue beam through a diffraction grating with the 50 mm–1 lines.

    图 4  不同抽运光场偏振组合下, 相干455 nm蓝光信号随抽运光@917 nm频率失谐的变化. 抽运光@852 nm频率共振于6S1/2(F = 4)→6P3/2(F' = 5)跃迁线, 抽运光@917 nm频率在6P3/2→6D5/ 2跃迁线之间扫描. 最上方黑色曲线为6P3/2→6D5/ 2跃迁的OODR光谱, 其作为频率参考; 其他曲线为来自光电倍增管PMT的相干455 nm蓝光信号

    Fig. 4.  Profiles of the 455 nm coherent blue light at different combinations of the two pump lasers’ polarizations. The pump laser @852 nm is resonant on the 6S1/2(F = 4)→ 6P3/2(F' = 5) transition, while the pump laser @917 nm is scanned over the 6P3/2→6D5/2 transition. The upper curve represents the OODR spectrum between the 6P3/2→6D5/2 hyperfine transition as a frequency reference, and other curves are the 455 nm coherent blue light signals from the PMT.

    图 5  归一化的相干455 nm蓝光增强信号随894 nm反抽运光频率失谐的变化. 两抽运光852 nm和917 nm频率共振于6S1/2(F = 4)→6P3/2(F' = 5)→6D5/2(F'' = 6)循环跃迁线, 894 nm反抽运光零失谐位置为6S1/2(F = 3)→6P1/2(F' = 4)超精细跃迁线. 图中上方黑色曲线为6S1/2(F = 3)→6P1/2跃迁的饱和吸收谱, 其作为频率参考

    Fig. 5.  Normalized coherent 455 nm blue light intensity as a function of frequency detuning of repumping laser @894 nm from the 6S1/2(F = 3)→6P1/2(F' = 4) transition. The 852 nm and 917 nm pump lasers are resonant on the 6S1/2(F = 4)→6P3/2(F' = 5)→6D5/2(F'' = 6) transitions, respectively. The upper curve represents the SAS signal between the 6S1/2(F = 3)→6P1/2 transition as a frequency reference.

    图 6  (a) 894 nm反抽运光存在与否时, 相干455 nm蓝光强度的对比(抽运光@852 nm频率共振于6S1/2(F = 4)→6P3/2(F' = 5)跃迁线, 抽运光@917 nm频率在6P3/2→6D5/ 2跃迁线之间扫描); (b) 归一化的相干455 nm蓝光强度随894 nm反抽运光功率的变化

    Fig. 6.  (a) Comparison of coherent 455 nm blue light intensity versus the frequency detuning of pump laser @917 nm between the presence or absence of repuming laser @894 nm, when the pump laser @852 nm laser is resonant on the 6S1/2(F = 4)→6P3/2(F' = 5) transition; (b) normalized coherent 455 nm blue light intensity dependence of the power of repumping laser @894 nm.

    图 7  反抽运光存在与否时, 相干455 nm蓝光强度随铯原子气室温度(a)、抽运光@852 nm功率 (b)、抽运光@917 nm功率(c)的变化. 抽运光@852 nm频率共振于6S1/2(F = 4)→6P3/2(F' = 5)超精细跃迁线, 抽运光@917 nm频率在6P3/2→6D5/2跃迁线之间扫描. 反抽运光@894 nm频率共振于6S1/2(F = 3)→6P1/2(F' = 4)超精细跃迁线

    Fig. 7.  Comparisons of coherent 455 nm blue light intensity versus the temperature of the Cs vapor cell (a), power of pump laser @852 nm (b), and power of pump laser @917 nm (c) between the presence or absence of 894 nm repumping laser: The pump laser @852 nm is resonant on the 6S1/2(F = 4)→6P3/2(F' = 5) transition, while the pump laser @917 nm is scanned over the 6P3/2→6D5/2 transition, and the repumping laser @894 nm is resonant on the 6S1/2(F = 3)→6P1/2(F' = 4) transition, respectively.

  • [1]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [2]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818Google Scholar

    [3]

    Vanier J 2005 Appl. Phys. B 81 421Google Scholar

    [4]

    Akulshin A M, Perrella C, Truong G W, McLean R J, Luiten A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245503Google Scholar

    [5]

    冯啸天, 袁春华, 陈丽清, 陈洁菲, 张可烨, 张卫平 2018 物理学报 67 164204Google Scholar

    Feng X T, Yuan C H, Chen L Q, Chen J F, Zhang K Y, Zhang W P 2018 Acta Phys. Sin. 67 164204Google Scholar

    [6]

    Scully M O, Fleischhauer M 1994 Science 263 337Google Scholar

    [7]

    Akulshin A M, Bustos F P, Budker D 2018 Opt. Lett. 43 5279Google Scholar

    [8]

    Lam M, Pal S B, Vogt T, Gross C, Kiffner M, Li W H 2019 Opt. Lett. 44 2931Google Scholar

    [9]

    Gai B D, Hu S, Chu J Z, Wang P Y, Cai X L, Guo J W 2021 OSA Continuum. 4 2410Google Scholar

    [10]

    Zibrov A S, Lukin M D, Hollberg L, Scully M O 2002 2002 Phys. Rev. A 65 051801(RGoogle Scholar

    [11]

    Meijer T, White J D, Smeets B, Jeppesen M, Scholten R E 2006 Opt. Lett. 31 1002Google Scholar

    [12]

    Akulshin A M, McLean R J, Sidorov A I, Hannaford P 2009 Opt. Express 17 22861Google Scholar

    [13]

    Kienlen M B, Holte N T, Dassonville H A, et al. 2013 Am. J. Phys. 81 442Google Scholar

    [14]

    Akulshin A M, Budker D, McLean R J 2014 Opt. Lett. 39 845Google Scholar

    [15]

    Sebbag Y, Barash Y, Levy U 2019 Opt. Lett. 44 971Google Scholar

    [16]

    Vernier A, Franke-Arnold S, Riis E, Arnold A S 2010 Opt. Express 18 17020Google Scholar

    [17]

    Akulshin A M, Orel A A, McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401Google Scholar

    [18]

    Cao R, Gai B D, Yang J, et al. 2015 Chin. Opt. Lett. 13 121903Google Scholar

    [19]

    Prajapati N, Akulshin A M, Novikova I 2018 J. Opt. Soc. Am. B 35 1133Google Scholar

    [20]

    Moreno M P, Almeida A A C, Vianna S S 2019 Phys. Rev. A 99 043410Google Scholar

    [21]

    Offer R F, Conway J W C, Riis E, Franke-Arnold S, Arnold A S 2016 Opt. Lett. 41 2177Google Scholar

    [22]

    Yuan J P, Liu H, Wang L R, Xiao L T, Jia S T 2021 Opt. Express 29 4858Google Scholar

    [23]

    Akulshin A M, Budker D, Mclean R J 2017 J. Opt. Soc. Am. B 34 1016Google Scholar

    [24]

    Schultz J T, Abend S, Döring D, Debs J E, Altin P A, White J D, Robins N P, Close J D 2009 Opt. Lett. 34 2321Google Scholar

    [25]

    Zhang Y Y, Wu J Z, He Y Y, Zhang Y, Hu Y D, Zhang J X, Zhu S Y 2020 Opt. Express 28 17723Google Scholar

    [26]

    Wu J Z, Xu Y H, Dong R G, Zhang J X 2021 Opt. Lett. 46 3119Google Scholar

    [27]

    Yang B D, Liang Q B, He J, Zhang T C, Wang J M 2010 Phys. Rev. A 81 043803Google Scholar

    [28]

    Yang B D, Zhang J F, Wang J M 2019 Chin. Opt. Lett. 17 093001Google Scholar

  • [1] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易. 物理学报, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [2] 曹雷明, 杜金鉴, 张凯, 刘胜帅, 荆杰泰. 基于四波混频过程产生介于锥形探针光和锥形共轭光之间的多模量子关联. 物理学报, 2022, 71(16): 160306. doi: 10.7498/aps.71.20220081
    [3] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [4] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度. 物理学报, 2021, 70(23): 230702. doi: 10.7498/aps.70.20210920
    [5] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [6] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [7] 余胜, 刘焕章, 刘胜帅, 荆杰泰. 基于四波混频过程和线性分束器产生四组份纠缠. 物理学报, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [8] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究. 物理学报, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [9] 李建设, 李曙光, 赵原源, 刘强, 范振凯, 王光耀. 在单零色散微结构光纤中一次抽运同时发生两组四波混频的实验观察. 物理学报, 2016, 65(21): 214201. doi: 10.7498/aps.65.214201
    [10] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [11] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [12] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [13] 惠战强, 张建国. 基于光子晶体光纤中双抽运四波混频效应的非归零到归零码型转换实验研究. 物理学报, 2013, 62(8): 084209. doi: 10.7498/aps.62.084209
    [14] 惠战强, 张建国. 基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换. 物理学报, 2012, 61(1): 014217. doi: 10.7498/aps.61.014217
    [15] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [16] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [17] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器. 物理学报, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [18] 贾新鸿, 钟东洲, 王 飞, 陈海涛. 基于λ/4相移分布反馈半导体激光器四波混频的THz波长转换特性研究. 物理学报, 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [19] 马博琴, 王 霆, 盛 艳, 倪培根, 程丙英, 张道中. 二维非线性光子晶体中的高阶准相位匹配谐频. 物理学报, 2005, 54(8): 3670-3674. doi: 10.7498/aps.54.3670
    [20] 李培丽, 张新亮, 陈 俊, 黄黎蓉, 黄德修. 基于环行腔激光器四波混频型可调谐波长转换的理论研究. 物理学报, 2005, 54(3): 1222-1228. doi: 10.7498/aps.54.1222
计量
  • 文章访问数:  3344
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-05-30
  • 上网日期:  2022-09-05
  • 刊出日期:  2022-09-20

/

返回文章
返回