搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柔性超构材料宽带调控太赫兹波的偏振态

陈乐迪 范仁浩 刘雨 唐贡惠 马中丽 彭茹雯 王牧

引用本文:
Citation:

基于柔性超构材料宽带调控太赫兹波的偏振态

陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧

Broadband modulation of terahertz wave polarization states with flexible metamaterial

Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu
PDF
HTML
导出引用
  • 基于柔性超构材料从理论和实验两方面研究其对太赫兹波偏振态的宽带调控. 首先以空间对称性破缺的L型金属-介质-金属结构为基本单元, 构造出太赫兹手性超构材料. 当太赫兹波与其相互作用时会产生一系列电偶极子, 其时间响应可通过改变复合结构的几何参量来有效地调控, 进而实现太赫兹波从线偏振态到圆偏振态的宽带高效转换. 理论分析表明该手性超构材料中电偶极子的辐射随着入射角变化基本保持不变, 从而利用该太赫兹手性超构材料可以构造能产生圆偏振态的柔性太赫兹波片, 基于等效电路模型给出了该柔性太赫兹波片在弯曲情况下的工作原理. 实验上, 以柔性聚合物为介质层, 利用光刻等微加工技术制备出基于该超构材料的柔性太赫兹波片, 结果表明当线偏振太赫兹波入射到样品时, 该样品能够在0.46—0.62 THz宽带范围内实现由线偏振态到圆偏振态的高效转换, 同时在弯曲程度不同的情况下出射波均能保持稳定的圆偏振态. 这种基于柔性超构材料来宽带调控太赫兹波偏振态的方案将有望应用于6G通信、分子探测等领域.
    In this work, we study the broadband manipulation of polarization states of terahertz (THz) waves with flexible metamaterial both theoretically and experimentally. Firstly, we construct a chiral THz metamaterial with asymmetric L-shaped metal-dielectric-metal structure, generating a series of electric dipoles via its interacting with terahertz waves. By changing the geometric parameters of the structure, the time responses of the electric dipoles in the two orthogonal directions are effectively modulated. Consequently, the chiral metamaterial efficiently converts linearly polarized terahertz wave into a circularly polarized one. The radiation of the metamaterial remains almost unaffected by the changing of the incident angle, which indicates that this chiral metamaterial can be used to realize a flexible terahertz circularly-polarized wave plate. Further, we present the working principle of this flexible terahertz circularly-polarized wave plate at the bending state based on the equivalent circuit model. Moreover, we fabricate a flexible metamaterial wave plate by using polymers as the dielectric layer. When the linearly polarized light is incident on the metamaterial, the circularly polarized output can be achieved in a wide frequency range of 0.46–0.62 THz. The polarization conversion remains quite stable even if the sample is bent. This flexible terahertz metamaterial wave plate is expected to be applied to 6G communication, molecular detection, etc.
      通信作者: 范仁浩, rhfan@nju.edu.cn ; 彭茹雯, rwpeng@nju.edu.cn ; 王牧, muwang@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975078, 11974177)和国家重点研发计划(批准号: 2017YFA0303702)资助的课题.
      Corresponding author: Fan Ren-Hao, rhfan@nju.edu.cn ; Peng Ru-Wen, rwpeng@nju.edu.cn ; Wang Mu, muwang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975078, 11974177) and the National Key R&D Program of China (Grant No. 2017YFA0303702).
    [1]

    Yang P, Xiao Y, Xiao M, Li S 2019 IEEE Network 33 70

    [2]

    Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M 2020 IEEE Commun. Mag. 58 55Google Scholar

    [3]

    Chowdhury M Z, Shahjalal M, Ahmed S, Jang Y M 2020 IEEE Open J. Commun. Soc. 1 957Google Scholar

    [4]

    Akyildiz I F, Kak A, Nie S 2020 IEEE Access 8 133995Google Scholar

    [5]

    Imoize A L, Adedeji O, Tandiya N, Shetty S 2021 Sensors 21 1709Google Scholar

    [6]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [7]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [8]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [9]

    Yang Y, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [10]

    Yang F, Pitchappa P, Wang N 2022 Micromachines 13 285Google Scholar

    [11]

    Martinez-Lopez L, Rodriguez-Cuevas J, Martinez-Lopez J I, Martynyuk A E 2014 IEEE Antennas Wirel. Propag. Lett. 13 153Google Scholar

    [12]

    Hossain T M, Mirza H, Soh P J, Jamlos M F, Sheikh R A, Al-Hadi A A, Akkaraekthalin P 2019 IEEE Access 7 149262Google Scholar

    [13]

    Lokman A H, Soh P J, Azemi S N, et al. 2017 Int. J. Antennas Propag. 2017 4940656

    [14]

    Paracha K N, Rahim S K A, Soh P J, Khalily M 2019 IEEE Access 7 56694Google Scholar

    [15]

    Li J, Zhang L, Zhang M, Su H, Li I L, Ruan S, Liang H 2020 Adv. Opt. Mater. 8 2000068Google Scholar

    [16]

    Sayem A S M, Simorangkir R B V B, Esselle K P, Lalbakhsh A, Gawade D R, O'Flynn B, Buckley J L 2022 Sensors 22 1276Google Scholar

    [17]

    Wen D D, Yue F Y, Liu W W, Chen S Q, Chen X Z 2018 Adv. Opt. Mater. 6 1800348Google Scholar

    [18]

    Niu X X, Hu X Y, Chu S S, Gong Q H 2018 Adv. Opt. Mater. 6 1701292Google Scholar

    [19]

    Che Y H, Wang X T, Song Q H, Zhu Y B, Xiao S M 2020 Nanophotonics 9 4407Google Scholar

    [20]

    Fan R H, Xiong B, Peng R W, Wang M 2020 Adv. Mater. 32 1904646

    [21]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [22]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [23]

    杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 物理学报 65 080702Google Scholar

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702Google Scholar

    [24]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701Google Scholar

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701Google Scholar

    [25]

    Cheng Y, Zhu X, Li J, Chen F, Luo H, Wu L 2021 Physica E 134 114893Google Scholar

    [26]

    Li S X, Yang Z Y, Wang J, Zhao M 2011 J. Opt. Soc. Am. A 28 19Google Scholar

    [27]

    Yu Y, Yang Z Y, Zhao M, Lu P X 2011 J. Opt. 13 055104Google Scholar

    [28]

    Pan W, Ren X, Chen Q, Wang X 2019 Optoelectron. Lett. 15 352Google Scholar

    [29]

    Li Z, Pan J, Hu H, Zhu H 2022 Adv. Electron. Mater. 8 2100978Google Scholar

    [30]

    Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942Google Scholar

    [31]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020Google Scholar

    [32]

    Vasić B, Zografopoulos D C, Isić G, Beccherelli R, Gajić R 2017 Nanotechnology 28 124002Google Scholar

    [33]

    Fu Y, Wang Y, Yang G, Qiao Q, Liu Y 2021 Opt. Express 29 13373Google Scholar

    [34]

    Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang W L 2014 Laser Photonics Rev. 8 626Google Scholar

    [35]

    Sonsilphong A, Gutruf P, Withayachumnankul W, Abbott D, Bhaskaran M, Sriram S, Wongkasem N 2015 J. Opt. 17 085101Google Scholar

    [36]

    Baena J D, Bonache J, Martín F, Sillero R M, Falcone F, Lopetegi T, Laso M A G, García-García J, Gil I, Portillo M F, Sorolla M 2005 IEEE Trans. Microwave Theory Tech. 53 1451Google Scholar

    [37]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104Google Scholar

    [38]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

  • 图 1  柔性宽带太赫兹波片示意图 (a) 未弯曲情形; (b) 单元结构; (c) 弯曲情形

    Fig. 1.  Schematic diagram of flexible broadband terahertz wave plate: (a) Wave plate without bending; (b) element structure; (c) wave plate under bending.

    图 2  宽带偏振转换物理原理的计算验证 (a), (b) 入射光频率为0.55 THz时, 不同入射角下计算的结构上方0.5 μm 处Ez分量的(a)强度分布图和(b)相位分布图; (c) 计算的不同入射角度下的辐射场项$|{{\boldsymbol{E}}_{{\text{rad}}}}|$和共轭关系项$\left| - {{\text{e}}^{{\text{i}}k\tfrac{d}{{\cos \theta }}}} + {{\text{e}}^{ - {\text{i}}k\tfrac{d}{{\cos \theta }}}}\right|$随频率的变化; (d) 计算的不同入射角度下 |Ey'|/|Ex'| 随频率的变化

    Fig. 2.  Theoretical verification of the physical principle of broadband polarization conversion: Calculated (a) intensity distribution maps and (b) phase distribution diagrams of Ez component at 0.5 μm above the structure at 0.55 THz with incident angles of 15°, 30°, 45°, 60°; (c) calculated radiation field term $|{{\boldsymbol{E}}_{{\text{rad}}}}|$ and the conjugate term $\left| - {{\text{e}}^{{\text{i}}k\tfrac{d}{{\cos \theta }}}} + {{\rm e} ^{ - {\text{i}}k\tfrac{d}{{\cos \theta }}}}\right|$ at different incident angles and frequencies; (d) calculated |Ey'|/|Ex'| with different incident angles and frequencies.

    图 3  弯曲情况下出射波偏振转换的稳定性 (a), (b) 计算的在不同入射角度下的(a) |Ey'|/|Ex'|和(b) φy' φx'; (c), (d) 计算的(c) |Ey'|/|Ex'|和(d) φy' φx'随入射角和频率的变化关系

    Fig. 3.  Stability analysis on output polarization states of terahertz waves under bending: Calculated (a) |Ey'|/|Ex'| and (b) φy' φx' at some different incident angles; calculated (c) |Ey'|/|Ex'| and (d) φy' φx' at different incident angles and frequencies.

    图 4  L型金属结构尺寸对偏振调控的影响 (a), (b) 计算的在不同L型结构臂长l下的(a) |Ey'|/|Ex'|和(b) φy' φx'; (c), (d) 计算的在不同L型结构宽度w下的(c) |Ey'|/|Ex'|和(d) φy' φx'

    Fig. 4.  Effect of L-shaped structure size on polarization control: Calculated (a) |Ey'|/|Ex'| and (b) φy' φx' with different l; calculated (c) |Ey'|/|Ex'| and (d) φy' φx' with different w.

    图 5  未弯曲时柔性太赫兹波片出射波偏振态的实验与计算结果 (a) 样品光学照片(白标尺为100 μm); (b) 太赫兹时域光谱仪测量原理图; 线偏振片透光轴相对y' 轴 (c) 45°和 (d) –45°时测得的电场时域谱; 实验测得的随频率变化的(e) |Ey'|/|Ex'|和(f) φy' φx'; 计算的随频率变化的(g) |Ey'|/|Ex'|和(h) φy' φx'

    Fig. 5.  Measured and calculated polarization states of output waves of wave plate without bending: (a) Optical photograph of sample, white scale bar is 100 μm; (b) schematic diagram of terahertz time-domain spectrometer; the time-domain spectrum of electric field measured with transmission axis of linear polarizer relative to y' axis (c) 45° and (d) –45°; measured (e) |Ey'|/|Ex'| and (f) φy' φx' as a function of frequency; calculated (g) |Ey'|/|Ex'| and (h) φy' φx' as a function of frequency.

    图 6  不同弯曲程度下的太赫兹波时域谱测量结果 (a) 不同弯曲程度下拍摄的样品照片; (b) 曲率半径与相关结构参数的关系式示意图; 不同曲率半径下测量的太赫兹时域谱, 其中(c) r = 0.71 m, (d) r = 0.36 m, (e) r = 0.24 m, (f) r = 0.18 m, (g) r = 0.14 m

    Fig. 6.  Measured time domain results at different bending states: (a) Photographs at different bending states; (b) schematic diagram of the relationship between the radius of curvature and relevant structural parameters; the measured time-domain spectra under different curvature radius of (c) r = 0.71 m, (d) r = 0.36 m, (e) r = 0.24 m, (f) r = 0.18 m, (g) r = 0.14 m.

    图 7  (a)—(e) 不同曲率半径下测量到的|Ey'|/|Ex'|, 其中(a) r = 0.71 m, (b) r = 0.36 m, (c) r = 0.24 m, (d) r = 0.18 m, (e) r = 0.14 m; (f) 在0.54 THz处|Ey'|/|Ex'| 随弯曲曲率半径的变化关系

    Fig. 7.  Measured |Ey'|/|Ex'| under different curvature radius: (a) r = 0.71 m; (b) r = 0.36 m; (c) r = 0.24 m; (d) r = 0.18 m; (e) r = 0.14 m. (f) Relationship between |Ey'|/|Ex'| and curvature radius at 0.54 THz.

    图 8  不同曲率半径下测量到的 φy' φx', 其中(a) r = 0.71 m, (b) r = 0.36 m, (c) r = 0.24 m, (d) r = 0.18 m, (e) r = 0.14 m; (f) 在0.54 THz处 φy' φx' 随弯曲曲率半径的变化关系

    Fig. 8.  Measured φy' φx' under different curvature radius: (a) r = 0.71 m; (b) r = 0.36 m; (c) r = 0.24 m; (d) r = 0.18 m; (e) r = 0.14 m. (f) Relationship between φy' φx' and curvature radius at 0.54 THz.

  • [1]

    Yang P, Xiao Y, Xiao M, Li S 2019 IEEE Network 33 70

    [2]

    Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M 2020 IEEE Commun. Mag. 58 55Google Scholar

    [3]

    Chowdhury M Z, Shahjalal M, Ahmed S, Jang Y M 2020 IEEE Open J. Commun. Soc. 1 957Google Scholar

    [4]

    Akyildiz I F, Kak A, Nie S 2020 IEEE Access 8 133995Google Scholar

    [5]

    Imoize A L, Adedeji O, Tandiya N, Shetty S 2021 Sensors 21 1709Google Scholar

    [6]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [7]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [8]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [9]

    Yang Y, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [10]

    Yang F, Pitchappa P, Wang N 2022 Micromachines 13 285Google Scholar

    [11]

    Martinez-Lopez L, Rodriguez-Cuevas J, Martinez-Lopez J I, Martynyuk A E 2014 IEEE Antennas Wirel. Propag. Lett. 13 153Google Scholar

    [12]

    Hossain T M, Mirza H, Soh P J, Jamlos M F, Sheikh R A, Al-Hadi A A, Akkaraekthalin P 2019 IEEE Access 7 149262Google Scholar

    [13]

    Lokman A H, Soh P J, Azemi S N, et al. 2017 Int. J. Antennas Propag. 2017 4940656

    [14]

    Paracha K N, Rahim S K A, Soh P J, Khalily M 2019 IEEE Access 7 56694Google Scholar

    [15]

    Li J, Zhang L, Zhang M, Su H, Li I L, Ruan S, Liang H 2020 Adv. Opt. Mater. 8 2000068Google Scholar

    [16]

    Sayem A S M, Simorangkir R B V B, Esselle K P, Lalbakhsh A, Gawade D R, O'Flynn B, Buckley J L 2022 Sensors 22 1276Google Scholar

    [17]

    Wen D D, Yue F Y, Liu W W, Chen S Q, Chen X Z 2018 Adv. Opt. Mater. 6 1800348Google Scholar

    [18]

    Niu X X, Hu X Y, Chu S S, Gong Q H 2018 Adv. Opt. Mater. 6 1701292Google Scholar

    [19]

    Che Y H, Wang X T, Song Q H, Zhu Y B, Xiao S M 2020 Nanophotonics 9 4407Google Scholar

    [20]

    Fan R H, Xiong B, Peng R W, Wang M 2020 Adv. Mater. 32 1904646

    [21]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [22]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [23]

    杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 物理学报 65 080702Google Scholar

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702Google Scholar

    [24]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701Google Scholar

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701Google Scholar

    [25]

    Cheng Y, Zhu X, Li J, Chen F, Luo H, Wu L 2021 Physica E 134 114893Google Scholar

    [26]

    Li S X, Yang Z Y, Wang J, Zhao M 2011 J. Opt. Soc. Am. A 28 19Google Scholar

    [27]

    Yu Y, Yang Z Y, Zhao M, Lu P X 2011 J. Opt. 13 055104Google Scholar

    [28]

    Pan W, Ren X, Chen Q, Wang X 2019 Optoelectron. Lett. 15 352Google Scholar

    [29]

    Li Z, Pan J, Hu H, Zhu H 2022 Adv. Electron. Mater. 8 2100978Google Scholar

    [30]

    Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942Google Scholar

    [31]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020Google Scholar

    [32]

    Vasić B, Zografopoulos D C, Isić G, Beccherelli R, Gajić R 2017 Nanotechnology 28 124002Google Scholar

    [33]

    Fu Y, Wang Y, Yang G, Qiao Q, Liu Y 2021 Opt. Express 29 13373Google Scholar

    [34]

    Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang W L 2014 Laser Photonics Rev. 8 626Google Scholar

    [35]

    Sonsilphong A, Gutruf P, Withayachumnankul W, Abbott D, Bhaskaran M, Sriram S, Wongkasem N 2015 J. Opt. 17 085101Google Scholar

    [36]

    Baena J D, Bonache J, Martín F, Sillero R M, Falcone F, Lopetegi T, Laso M A G, García-García J, Gil I, Portillo M F, Sorolla M 2005 IEEE Trans. Microwave Theory Tech. 53 1451Google Scholar

    [37]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104Google Scholar

    [38]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [5] 蓝顺, 潘豪, 林元华. 柔性无机铁电薄膜的制备及其应用. 物理学报, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [6] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [7] 姚尧, 沈悦, 郝加明, 戴宁. 基于亚波长人工微结构的电磁波减反增透研究进展. 物理学报, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [10] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [11] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [12] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [13] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [14] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [15] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [16] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [17] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [18] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [19] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [20] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
计量
  • 文章访问数:  3559
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-05-10
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回