-
随着柔性电子产品的迅速发展, 具有优异铁电和压电性的Pb(Zr0.53Ti0.47)O3 (PZT)薄膜在柔性的非易失性存储器、传感器和制动器等器件中有广泛的应用前景. 同时, 由于外部环境越来越复杂, 具有高温稳定特性的材料和器件受到越来越多的关注. 本文在耐高温的二维层状氟晶云母衬底上, 用脉冲激光沉积技术制备出外延的PZT薄膜, 并通过机械剥离的方法, 得到柔性的外延PZT薄膜. 研究了Pt/PZT/SRO异质结的铁电和压电性及其高温特性, 发现样品表现出优越的铁电性, 剩余极化强度(Pr)高达65
${\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ , 在弯曲104次后其铁电性基本保持不变, 且样品在275 ℃高温时仍然保持良好的铁电性. 本文为柔性PZT薄膜在航空航天器件中的应用提供了实验基础.-
关键词:
- Pb(Zr0.53Ti0.47)O3 /
- 柔性薄膜 /
- 耐高温 /
- 铁电性
Recently, flexible electronic devices have attracted extensive attention due to their characteristics of flexibility, miniaturization and portability. Flexible functional oxide thin films with high performance and stability are the basis for high-performance flexible electronic devices. Perovskite lead zirconate titanate Pb(Zr0.53Ti0.47)O3 (PZT) at "morphotropic phase boundary" indicates excellent ferroelectricity and piezoelectricity, and has broad prospects in flexible non-volatile memories, sensors and actuators. Moreover, high-temperature stable flexible memories and sensors have received increasing attention due to the escalating complexity of the external environment. In the present work, Pb(Zr0.53Ti0.47)O3/SrRuO3/BaTiO3 (PZT/SRO/BTO) heterostructures are prepared by pulsed laser deposition on high temperature resistant two-dimensional layered fluorphlogopite mica substrates. Afterward, flexible epitaxial PZT thin films are obtained by mechanical stripping. The ferroelectricity, piezoelectricity and high temperature characteristics of PZT thin films are investigated. The thin films show superior ferroelectricity at room and high temperatures. At room temperature, the thin films exhibit excellent ferroelectricity with a remnant polarization (Pr) of ~$ {\rm{65}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ . A saturation polarization (Ps) of ~$ {\rm{80}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ and a coercive field (Ec) of ~100 kV/cm are also observed. In addition, after bending the thin films to a 1.5 cm radius 104 times, their ferroelectricity does not show deterioration at room temperature. In order to study the ferroelectricity of PZT thin films at high temperature, P-E loops from 27 ℃ to 275 ℃ are tested. The results show that the films still show excellent ferroelectricity with a Pr of ~$ {\rm{50}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ and a Ps of ~$ {\rm{70}}\;{\text{μ}} {\rm{C/c}}{{\rm{m}}^{\rm{2}}}$ at 275 ℃. The present work provides a basis for the application of flexible epitaxial PZT thin film. Especially, the ferroelectricity of flexible PZT thin films at high temperature provides a possibility of obtaining high-temperature flexible electronic devices.-
Keywords:
- Pb(Zr0.53Ti0.47)O3 /
- flexible films /
- high temperature /
- ferroelectric
[1] Forrest S R 2004 Nature 42 8911
[2] Hou P F, Yang K X, Ni K K, Wang J B, Zhang X L, Liao M, Zheng S Z 2018 J. Mater. Chem. C 6 5193Google Scholar
[3] Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 295Google Scholar
[4] Scott J F, Araujo C A P 1989 Science 246 1400Google Scholar
[5] Jaffe B, Roth R S, Marzullo S 2004 J. Appl. Phys. 2 56Google Scholar
[6] Kim D J, Maria J P, Kingon A I, Streiffer S K 2003 J. Appl. Phys. 93 5568Google Scholar
[7] Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Susan T M, Ryu J 2017 APL Mater. 5 0096111Google Scholar
[8] Bao D H, Zhu X H, Alexe M, Dietrich H 2008 J. Electroceram 21 72Google Scholar
[9] Wang Y P, Zhou L, Lu X B, Liu Z G 2003 Appl. Surf. Sci. 205 176Google Scholar
[10] Rho J, Kim S J, Heo W, Lee N E, Lee H S, Ahn J H 2010 Electron Dev. Lett. 31 1017Google Scholar
[11] Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405Google Scholar
[12] Aday J, Mendoza M, Lado J L, Joshua O I 2016 Chem. Mater. 28 4042Google Scholar
[13] Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar
[14] Jiang J, Bite Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121Google Scholar
[15] Gao W X, You L, Wang Y J, Yuan G L, Chu Y H, Liu Z G, Liu J M 2017 Adv. Electron 3 1600542Google Scholar
[16] 胡婷, 阚二军 2018 物理学报 67 157701Google Scholar
Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar
[17] Tommaso G 2018 Nature Mater. 17 846Google Scholar
[18] Lin S H, Chui Y S, Li Y Y, Lau S P 2017 FlatChem 2 15Google Scholar
[19] Ohno T, Fukumitsu T, Honda T, Hirai S, Arai T, Sakamoto N, Wakiya N, Suzuki H, Matsuda T 2015 Mater. Lett. 181 74Google Scholar
[20] Izyumskaya N, Alivov Y I, Cho S J, Morkoc H, Lee H, Kang Y S 2013 Crit. Rev. Solid Mater. Sci. 32 111Google Scholar
[21] Li C I, Lin J C, Chu M W, Chen H W, Ma C H, Tsai C Y, Huang H W, Lin H J, Liu H L, Chiu P W Chu Y H 2016 Chem. Mater. 28 3914Google Scholar
-
表 1 脉冲激光沉积技术制备PZT/SRO/BTO异质结的实验条件
Table 1. Experimental conditions of PZT/SRO/BTO heterostructure by PLD.
制备工艺 沉积温度/℃ 腔内氧压/Pa 激光能量/mJ 脉冲频率/Hz 沉积时间/min BTO 580 20 100 2 6 SRO 580 20 100 3 20 PZT 600 15 165 4 50 -
[1] Forrest S R 2004 Nature 42 8911
[2] Hou P F, Yang K X, Ni K K, Wang J B, Zhang X L, Liao M, Zheng S Z 2018 J. Mater. Chem. C 6 5193Google Scholar
[3] Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 295Google Scholar
[4] Scott J F, Araujo C A P 1989 Science 246 1400Google Scholar
[5] Jaffe B, Roth R S, Marzullo S 2004 J. Appl. Phys. 2 56Google Scholar
[6] Kim D J, Maria J P, Kingon A I, Streiffer S K 2003 J. Appl. Phys. 93 5568Google Scholar
[7] Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Susan T M, Ryu J 2017 APL Mater. 5 0096111Google Scholar
[8] Bao D H, Zhu X H, Alexe M, Dietrich H 2008 J. Electroceram 21 72Google Scholar
[9] Wang Y P, Zhou L, Lu X B, Liu Z G 2003 Appl. Surf. Sci. 205 176Google Scholar
[10] Rho J, Kim S J, Heo W, Lee N E, Lee H S, Ahn J H 2010 Electron Dev. Lett. 31 1017Google Scholar
[11] Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405Google Scholar
[12] Aday J, Mendoza M, Lado J L, Joshua O I 2016 Chem. Mater. 28 4042Google Scholar
[13] Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar
[14] Jiang J, Bite Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121Google Scholar
[15] Gao W X, You L, Wang Y J, Yuan G L, Chu Y H, Liu Z G, Liu J M 2017 Adv. Electron 3 1600542Google Scholar
[16] 胡婷, 阚二军 2018 物理学报 67 157701Google Scholar
Hu T, Kan E J 2018 Acta Phys. Sin. 67 157701Google Scholar
[17] Tommaso G 2018 Nature Mater. 17 846Google Scholar
[18] Lin S H, Chui Y S, Li Y Y, Lau S P 2017 FlatChem 2 15Google Scholar
[19] Ohno T, Fukumitsu T, Honda T, Hirai S, Arai T, Sakamoto N, Wakiya N, Suzuki H, Matsuda T 2015 Mater. Lett. 181 74Google Scholar
[20] Izyumskaya N, Alivov Y I, Cho S J, Morkoc H, Lee H, Kang Y S 2013 Crit. Rev. Solid Mater. Sci. 32 111Google Scholar
[21] Li C I, Lin J C, Chu M W, Chen H W, Ma C H, Tsai C Y, Huang H W, Lin H J, Liu H L, Chiu P W Chu Y H 2016 Chem. Mater. 28 3914Google Scholar
计量
- 文章访问数: 9696
- PDF下载量: 167
- 被引次数: 0