搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性

石玉君 张旭 秦雷 金魁 袁洁 朱北沂 竺云

引用本文:
Citation:

Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性

石玉君, 张旭, 秦雷, 金魁, 袁洁, 朱北沂, 竺云

Rapid preparations of Bi1-xLaxFeO3± δ thin films and their ferroelectric properties

Shi Yu-Jun, Zhang Xu, Qin Lei, Jin Kui, Yuan Jie, Zhu Bei-Yi, Zhu Yun
PDF
导出引用
  • 样品的制备是对影响样品质量的各个工艺参数进行优化的过程. 传统的试错法是对各个参数逐个进行尝试, 需要的周期较长. 与传统的单参数尝试法相比, 高通量样品制备方法可以对参数实现并行筛选, 因而极大地缩短了优化工艺所需的时间. 本工作借助高通量制备方法成功实现系列镧掺杂BiFeO3薄膜的快速优化, 包括对烧结温度、镧元素含量和高温固态反应气氛等关键工艺参数的快速筛选, 同时分析了不同生长条件下样品的结构并测试了其铁电性. 实验结果表明: 1) 560 ℃ 烧结可得到单相薄膜; 2)测量不同La含量样品的铁电性, 发现当E=75 kV/cm时, La=15%的样品剩余极化值(2Pr)最大, 约为26.7 μC/cm2; 3) 在纯氧气氛下烧结有助于得到结晶性更好的单相Bi0.75La0.25FeO3±δ 薄膜, 并且能够提高薄膜的铁电性.
    Multiferroic materials exhibiting the features of ferroelectricity, ferromagnetism and even ferroelasticity simultaneously have attracted much attention because of their vast potential applications in multifunctional devices as well as their interesting physical connotations. BiFeO3 (BFO) is the multiferroic material most studied because it has only single phase of multiferroic oxide with giant remanent polarization above room temperature. Although BFO has many excellent advantages, the large leakage current is a chief obstacle for its practical application in some devices. As is well known, the leakage current of BFO is due to the valence transformation from Fe3+ to Fe2+ which results in the oxygen vacancy defect and low ferroelectric properties. Some experiments have confirmed that substituting some cations at A site (Bi) or B site (Fe) can improve the multiferroic property of BFO. In addition, we can reduce the leakage current by increasing the oxygen pressure to compensate for the vacancy defect during annealing. In the present work, we employ the sol-gel method which has been widely used in industries to prepare lanthanum doped BFO thin films (La =0, 5%, 10%, 15%, 20% and 25%) (BLFO) and Bi0.75La0.25FeO3± δ thin films separately in air and pure oxygen annealing atmosphere. And we are to achieve the optimal ferroelectric properties of BFO thin films. The traditional trial-and-error method which is used to check the value of a certain parameter one by one always takes rather long time. The high throughput methodology can screen the parameters simultaneously, which greatly reduces the optimizing time. Employing the high throughput methodology, we successfully realize a faster optimizing process to achieve the strongest ferroelectric property in La-doping BFO thin film. We analyze the structures and the ferroelectric properties of the samples grown in different conditions, such as the annealing temperature, the concentration of La-doping and the annealing atmosphere, etc. Results are as follows. 1) The optimal annealing temperature for achieving a single phase thin film is around 560℃. X-ray diffraction (XRD) patterns show that all the samples, including La-doping thin films with different concentrations, are of perfect single phase. Bi0.75La0.25FeO3± δ thin films are prepared separately in air and pure oxygen annealing atmosphere. 2) We calculate the lattice constants for all the doping samples of BLFO. With the increase of La-doping concentration, both a and b values reach the largest lattice constants of a=b=5.59~Å at La=15%. 3) Among all the doping samples, the sample with a La-doping concentration of 15% has the largest polarization 26.7 μC/cm2, which is consistent with its largest lattice constants. 4) The degrees of crystallinity and the ferroelectric properties of Bi0.75La0.25FeO3±δ thin films annealed in pure oxygen atmosphere are much better than those in air. The high throughput method is successfully used in the present work, and it plays an important role in exploring new materials in high-efficiency, speediness and objectivity. Therefore, it can be extended to many other materials for optimizing the grow conditions.
      通信作者: 竺云, wdxyzy@mail.tjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474338, 51001081)资助的课题.
      Corresponding author: Zhu Yun, wdxyzy@mail.tjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos 11474338, 51001081).
    [1]

    Yao X F, Zhang J X 2014 Physics 43 227 (in Chinese) [姚携菲, 张金星 2014 物理 43 227]

    [2]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [3]

    Yu P, Zhang J X 2013 Progress in Physics 33 369 (in Chinese) [于浦, 张金星 2013 物理学进展 33 369]

    [4]

    Chen B, Yang H, Miao J, Zhao L, Xu B, Dong X L, Cao L X, Qiu X G, Zhao B R 2005 Chin. Phys. Lett. 22 697

    [5]

    Yuan J, Wu H, Cao L X, Zhao L, Jin K, Zhu B Y, Zhu S J, Zhong J P, Miao J, Xu B, Qi X Y, Qiu X G, Duan X F, Zhao B R 2007 Appl. Phys. Lett. 90 102113

    [6]

    Kaczmarek W, Pajak Z, Polomska M 1975 Solid State Commun. 17 807

    [7]

    Yudin V M 1966 Soviet Physics Solid State,USSR 8 217

    [8]

    Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Dong X L, Chen C L 2014 Chin. Phys. B 23 117703

    [9]

    Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C, Wu G H 2014 Chin. Phys. B 23 047701

    [10]

    Zhang J X, Yu P 2013 Journal of the Chinese Ceramic Society 41 905 (in Chinese) [张金星, 于浦 2013 硅酸盐学报 41 905]

    [11]

    Smolenskii G A, Agranovskaia A I, Popov S N, Isupov V A 1958 Soviet Physics-Technical Physics 3 1981

    [12]

    Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903

    [13]

    Yuan G L, Or S W, Liu J M, Liu Z G 2006 Appl. Phys. Lett. 89 052905

    [14]

    Singh S K, Ishiwara H, Maruyama K 2006 Appl. Phys. Lett. 88 262908

    [15]

    Dutta D P, Mandal B P, Naik R, Lawes G, Tyagi A K 2013 J. Phys. Chem. C 117 2382

    [16]

    Lei T Y, Sun Y Y, Ren H, Zhang Y, Cai W, Fu C L 2014 Surface Technology 43 129 (in Chinese) [雷天宇, 孙远洋, 任红, 张玉, 蔡苇, 符春林 2014 表面技术 43 129]

    [17]

    Simões A Z, Riccardi C S, Dos Santos M L, Garcia F G, Longo E, Varela J A 2009 Mater. Res. Bull. 44 1747

    [18]

    Green M L, Takeuchi I, Hattrick-Simpers J R 2013 J. Appl. Phys. 113 231101

    [19]

    Terrett N K, Gardner M, Gordon D W, KobyleckI R J, Steele J 1995 Tetrahedron Report 51 8135

    [20]

    Pescarmona P P, van der Waal J C, Maxwell I E, Maschmeyer T 1999 Catal. Lett. 63 1

    [21]

    Thompson L A, Ellman J A 1996 Chem. Rev. 96 555

    [22]

    Merrifield R B, Stewart J M 1965 Nature 207 522

    [23]

    Chisholm B J, Webster D C 2007 J. Coat. Technol. Res. 4 1

    [24]

    Potyrailo R A, Mirsky V M 2008 Chem. Rev. 108 770

    [25]

    Koinuma H, Takeuchi I 2004 Nat. Mater. 3 429

    [26]

    Xiang X D, Sun X D, Briceno G, Lou Y L, Wang K A, Chang H Y, Wallace-Freedman W G, Chen S W, Schultz P G 1995 Science 268 1738

    [27]

    Takeuchi I, van Dover R B, Koinuma H 2002 MRS Bull. 27 301

    [28]

    Jin K, Suchoski R, Fackler S, Zhang Y, Pan X, Greene R L, Takeuchi I 2013 APL Mater. 1 042101

    [29]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [30]

    Zhang H, Liu F M, Ding P, Zhong W W, Zhou C C 2010 Acta Phys. Sin. 59 2078 (in Chinese) [张嬛, 刘发民, 丁芃, 钟文武, 周传仓 2010 物理学报 59 2078]

    [31]

    Arnold D C, Knight K S, Morrison F D, Lightfoot P 2009 Phys. Rev. Lett. 102 027602

    [32]

    Chaudhari Y, Mahajan C M, Singh A, Jagtap P, Chatterjee R, Bendre S 2015 J. Magn. Magn. Mater. 395 329

  • [1]

    Yao X F, Zhang J X 2014 Physics 43 227 (in Chinese) [姚携菲, 张金星 2014 物理 43 227]

    [2]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [3]

    Yu P, Zhang J X 2013 Progress in Physics 33 369 (in Chinese) [于浦, 张金星 2013 物理学进展 33 369]

    [4]

    Chen B, Yang H, Miao J, Zhao L, Xu B, Dong X L, Cao L X, Qiu X G, Zhao B R 2005 Chin. Phys. Lett. 22 697

    [5]

    Yuan J, Wu H, Cao L X, Zhao L, Jin K, Zhu B Y, Zhu S J, Zhong J P, Miao J, Xu B, Qi X Y, Qiu X G, Duan X F, Zhao B R 2007 Appl. Phys. Lett. 90 102113

    [6]

    Kaczmarek W, Pajak Z, Polomska M 1975 Solid State Commun. 17 807

    [7]

    Yudin V M 1966 Soviet Physics Solid State,USSR 8 217

    [8]

    Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Dong X L, Chen C L 2014 Chin. Phys. B 23 117703

    [9]

    Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C, Wu G H 2014 Chin. Phys. B 23 047701

    [10]

    Zhang J X, Yu P 2013 Journal of the Chinese Ceramic Society 41 905 (in Chinese) [张金星, 于浦 2013 硅酸盐学报 41 905]

    [11]

    Smolenskii G A, Agranovskaia A I, Popov S N, Isupov V A 1958 Soviet Physics-Technical Physics 3 1981

    [12]

    Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903

    [13]

    Yuan G L, Or S W, Liu J M, Liu Z G 2006 Appl. Phys. Lett. 89 052905

    [14]

    Singh S K, Ishiwara H, Maruyama K 2006 Appl. Phys. Lett. 88 262908

    [15]

    Dutta D P, Mandal B P, Naik R, Lawes G, Tyagi A K 2013 J. Phys. Chem. C 117 2382

    [16]

    Lei T Y, Sun Y Y, Ren H, Zhang Y, Cai W, Fu C L 2014 Surface Technology 43 129 (in Chinese) [雷天宇, 孙远洋, 任红, 张玉, 蔡苇, 符春林 2014 表面技术 43 129]

    [17]

    Simões A Z, Riccardi C S, Dos Santos M L, Garcia F G, Longo E, Varela J A 2009 Mater. Res. Bull. 44 1747

    [18]

    Green M L, Takeuchi I, Hattrick-Simpers J R 2013 J. Appl. Phys. 113 231101

    [19]

    Terrett N K, Gardner M, Gordon D W, KobyleckI R J, Steele J 1995 Tetrahedron Report 51 8135

    [20]

    Pescarmona P P, van der Waal J C, Maxwell I E, Maschmeyer T 1999 Catal. Lett. 63 1

    [21]

    Thompson L A, Ellman J A 1996 Chem. Rev. 96 555

    [22]

    Merrifield R B, Stewart J M 1965 Nature 207 522

    [23]

    Chisholm B J, Webster D C 2007 J. Coat. Technol. Res. 4 1

    [24]

    Potyrailo R A, Mirsky V M 2008 Chem. Rev. 108 770

    [25]

    Koinuma H, Takeuchi I 2004 Nat. Mater. 3 429

    [26]

    Xiang X D, Sun X D, Briceno G, Lou Y L, Wang K A, Chang H Y, Wallace-Freedman W G, Chen S W, Schultz P G 1995 Science 268 1738

    [27]

    Takeuchi I, van Dover R B, Koinuma H 2002 MRS Bull. 27 301

    [28]

    Jin K, Suchoski R, Fackler S, Zhang Y, Pan X, Greene R L, Takeuchi I 2013 APL Mater. 1 042101

    [29]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [30]

    Zhang H, Liu F M, Ding P, Zhong W W, Zhou C C 2010 Acta Phys. Sin. 59 2078 (in Chinese) [张嬛, 刘发民, 丁芃, 钟文武, 周传仓 2010 物理学报 59 2078]

    [31]

    Arnold D C, Knight K S, Morrison F D, Lightfoot P 2009 Phys. Rev. Lett. 102 027602

    [32]

    Chaudhari Y, Mahajan C M, Singh A, Jagtap P, Chatterjee R, Bendre S 2015 J. Magn. Magn. Mater. 395 329

计量
  • 文章访问数:  1960
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2015-12-23
  • 刊出日期:  2016-03-05

Bi1-xLaxFeO3±δ薄膜的快速制备及铁电性

  • 1. 天津师范大学物理与材料科学学院, 天津 300387;
  • 2. 中国科学院物理研究所, 北京凝聚态国家实验室, 北京 100190;
  • 3. 北京信息科技大学, 传感器技术研究中心, 北京 100101
  • 通信作者: 竺云, wdxyzy@mail.tjnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11474338, 51001081)资助的课题.

摘要: 样品的制备是对影响样品质量的各个工艺参数进行优化的过程. 传统的试错法是对各个参数逐个进行尝试, 需要的周期较长. 与传统的单参数尝试法相比, 高通量样品制备方法可以对参数实现并行筛选, 因而极大地缩短了优化工艺所需的时间. 本工作借助高通量制备方法成功实现系列镧掺杂BiFeO3薄膜的快速优化, 包括对烧结温度、镧元素含量和高温固态反应气氛等关键工艺参数的快速筛选, 同时分析了不同生长条件下样品的结构并测试了其铁电性. 实验结果表明: 1) 560 ℃ 烧结可得到单相薄膜; 2)测量不同La含量样品的铁电性, 发现当E=75 kV/cm时, La=15%的样品剩余极化值(2Pr)最大, 约为26.7 μC/cm2; 3) 在纯氧气氛下烧结有助于得到结晶性更好的单相Bi0.75La0.25FeO3±δ 薄膜, 并且能够提高薄膜的铁电性.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回