搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弛豫铁电体介电可调性的研究

尚勋忠 陈威 曹万强

引用本文:
Citation:

弛豫铁电体介电可调性的研究

尚勋忠, 陈威, 曹万强

Research on dielectric tunability of relaxor ferroelectrics

Shang Xun-Zhong, Chen Wei, Cao Wan-Qiang
PDF
导出引用
  • 无铅弛豫铁电体具有较好的介电可调性, 在顺电相有较大的介电常数和极小的损耗, 因较大的优值而被广泛地用于微波器件. 根据现有的介电可调性理论, 通过参量的适当修正, 对介电可调性的表达式做了合理的探讨, 结论适用于处理实验结果. 比较发现, 在电场作用下顺电相保持不变的近似得出的结论与实验结果差距较大, 而转化为铁电相与实验结果完全吻合. 考虑外加电场和自发极化对弹性吉布斯自由能的修正, 导出了高电场对介电常数的修正关系, 与实验结果相符. 提出了介电可调度的概念与计算公式, 能够定量表示掺杂对介电可调性的影响.
    Based on the high dielectric tunability, high dielectric constant and small dielectric loss at paraelectric phase, lead-free relaxor ferroelectrics have been used in microwave devises widely. According to the present theory of dielectric tunability, the expression of dielectric tunability is derived by adjusting parameters properly. The derived expression can be used to deal with experimental results. It is found that there exists a great difference between experimental result and the theoretical result obtained under the assumption of unchanged paraelectric phase under an electric field, while the experimental result and the theoretical result of Johnson in 1962 is consistent. A modified relation of dielectric constant with higher electric field is derived by considering the Gibbs free energy modified with an external electric field and a spontaneous polarization. The result from the modified equation is in agreement with the experimental result. A concept of degree of tunability is proposed to express quantitatively the relationship between dielectric tunability and concentration of dopants.
    • 基金项目: 国家自然科学基金(批准号: 11175062)和功能材料绿色制备与应用教育部重点实验室资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175062) and the Key Laboratory of Ministry of Education for the Green Preparation and Application of Functional Material.
    [1]

    Feteira A, Sinclair D C, Reaney I M, Somiya Y, Lanagan M T 2004 J. Am. Ceram. Soc. 87 1082

    [2]

    Lanagan M T, Yang N, Dube D C, Jang S J 1989 J. Am. Ceram. Soc. 72 481

    [3]

    Johnson K M 1962 J. Appl. Phys. 33 2826

    [4]

    Zhong W L 1996 Ferroelectrics (Beijing: Science Press) p430 (in Chinese) [钟维列 1996 铁电物理学 (北京: 科学出版社)第 430页]

    [5]

    Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701 (in Chinese) [陈威, 曹万强 2012 物理学报 61 097701]

    [6]

    Mitsui T, Tatszaki I, Nakamura E 1983 An Introduction to the Ferroelectrics (Beijing: Science Press) p55 (in Chinese) [三井利夫, 达崎达, 中村英二 1983 铁电物理学导论 (北京: 科学出版社)第55页]

    [7]

    Ianculescu A, Mocanu Z V, Curecheriu L P, Mitoseriu L, Padurariu L, Trusca R 2011 J. Alloys Compounds 509 10040

    [8]

    Cross L E 1987 Ferroelectrics 76 241

    [9]

    Liang R H, Dong X L, Chen Y, Cao F, Wang Y L 2005 Acta Phys. Sin. 54 4914 (in Chinese) [梁瑞虹, 董显林, 陈莹, 曹菲, 王永龄 2005 物理学报 54 4914]

    [10]

    Shang Y L, Shu M F, Chen W, Cao W Q 2012 Acta Phys. Sin. 61 197701 (in Chinese) [尚玉黎, 舒明飞, 陈威, 曹万强 2012 物理学报 61 197701]

    [11]

    Yu Z, Ang C, Guo R, Bhalla A S 2002 Appl. Phys. Lett. 81 1285

    [12]

    Maiti T, Guo R, Bhalla A S 2007 Appl. Phys. Lett. 90 182901

    [13]

    Maiti T, Guo R, Bhalla A S 2006 Appl. Phys. Lett. 89 122909

    [14]

    Tang X G, Chew K H, Chan H L W 2004 Acta Mater. 52 5177

  • [1]

    Feteira A, Sinclair D C, Reaney I M, Somiya Y, Lanagan M T 2004 J. Am. Ceram. Soc. 87 1082

    [2]

    Lanagan M T, Yang N, Dube D C, Jang S J 1989 J. Am. Ceram. Soc. 72 481

    [3]

    Johnson K M 1962 J. Appl. Phys. 33 2826

    [4]

    Zhong W L 1996 Ferroelectrics (Beijing: Science Press) p430 (in Chinese) [钟维列 1996 铁电物理学 (北京: 科学出版社)第 430页]

    [5]

    Chen W, Cao W Q 2012 Acta Phys. Sin. 61 097701 (in Chinese) [陈威, 曹万强 2012 物理学报 61 097701]

    [6]

    Mitsui T, Tatszaki I, Nakamura E 1983 An Introduction to the Ferroelectrics (Beijing: Science Press) p55 (in Chinese) [三井利夫, 达崎达, 中村英二 1983 铁电物理学导论 (北京: 科学出版社)第55页]

    [7]

    Ianculescu A, Mocanu Z V, Curecheriu L P, Mitoseriu L, Padurariu L, Trusca R 2011 J. Alloys Compounds 509 10040

    [8]

    Cross L E 1987 Ferroelectrics 76 241

    [9]

    Liang R H, Dong X L, Chen Y, Cao F, Wang Y L 2005 Acta Phys. Sin. 54 4914 (in Chinese) [梁瑞虹, 董显林, 陈莹, 曹菲, 王永龄 2005 物理学报 54 4914]

    [10]

    Shang Y L, Shu M F, Chen W, Cao W Q 2012 Acta Phys. Sin. 61 197701 (in Chinese) [尚玉黎, 舒明飞, 陈威, 曹万强 2012 物理学报 61 197701]

    [11]

    Yu Z, Ang C, Guo R, Bhalla A S 2002 Appl. Phys. Lett. 81 1285

    [12]

    Maiti T, Guo R, Bhalla A S 2007 Appl. Phys. Lett. 90 182901

    [13]

    Maiti T, Guo R, Bhalla A S 2006 Appl. Phys. Lett. 89 122909

    [14]

    Tang X G, Chew K H, Chan H L W 2004 Acta Mater. 52 5177

  • [1] 董石泉, 何安, 刘伟, 薛存. 磁悬浮系统中多芯复合Nb3Sn超导线磁通跳跃的可调性研究. 物理学报, 2023, 72(1): 017401. doi: 10.7498/aps.72.20221252
    [2] 聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, SokolovOleg, BichurinM. I., 汪尧进. 磁电电压可调电感器的理论设计与可调性优化. 物理学报, 2021, 70(24): 247501. doi: 10.7498/aps.70.20210899
    [3] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型. 物理学报, 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [4] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [5] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应. 物理学报, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [6] 赵强, 文岐业, 戴雨涵, 张继华, 陈宏伟, 杨传仁, 张万里. 基于钛酸锶钡介电非线性效应的可调谐太赫兹人工电磁媒质. 物理学报, 2013, 62(4): 044104. doi: 10.7498/aps.62.044104
    [7] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理. 物理学报, 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [8] 曹万强, 舒明飞. 弛豫铁电体的键能与配位数模型. 物理学报, 2013, 62(1): 017701. doi: 10.7498/aps.62.017701
    [9] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [10] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [11] 尚玉黎, 舒明飞, 陈威, 曹万强. 钛酸钡基施主掺杂弛豫铁电体介电弥散的唯象分析. 物理学报, 2012, 61(19): 197701. doi: 10.7498/aps.61.197701
    [12] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [13] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能. 物理学报, 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [14] 慕春红, 刘 鹏, 贺 颖, 张 丹, 孟 玲, 边小兵. Fe掺杂CaCu3Ti4O12陶瓷的介电性能与弛豫特性研究. 物理学报, 2008, 57(4): 2432-2437. doi: 10.7498/aps.57.2432
    [15] 惠荣, 朱骏, 卢网平, 毛翔宇, 羌锋, 陈小兵. La掺杂诱发层状钙钛矿型铁电体弛豫性相变的介电研究. 物理学报, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [16] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [17] 董正高, 沈明荣, 徐闰, 甘肇强, 葛水兵. 氧气氛低温退火Pt/Ba0.8Sr0.2TiO3Pt引起的低频介电弛豫效应. 物理学报, 2002, 51(12): 2896-2900. doi: 10.7498/aps.51.2896
    [18] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [19] 张兴元, 古川猛夫. 偏氟乙烯/三氟乙烯铁电共聚物的非晶介电弛豫. 物理学报, 1993, 42(8): 1370-1374. doi: 10.7498/aps.42.1370
    [20] 李景德, 李家宝, 符史流, 沈文彬. 自由和随机介电弛豫. 物理学报, 1992, 41(1): 155-161. doi: 10.7498/aps.41.155
计量
  • 文章访问数:  8812
  • PDF下载量:  1150
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-05
  • 修回日期:  2012-05-23
  • 刊出日期:  2012-11-05

/

返回文章
返回