-
用分子动力学(MD)模拟方法研究水合物法储氢的促进机理,系统研究纯H2水合物、H2+四氢呋喃(THF)水合物、H2+四丁基溴化铵(TBAB)半笼型水合物和H2+四异戊基溴化铵(TiAAB)半笼型水合物的微观结构及性质.模拟分析客体与笼子之间的稳定能EGH,得出水合物中大笼子对稳定水合物起到主要作用.THF进入大笼子能促进H2水合物稳定,降低H2水合物形成压力,模拟结果与实验一致.模拟对比不同客体在大笼子中的EGH值,得出从小到大的顺序依次为TiAAB,TBAB,THF,H2.模拟结果表明半笼型水合物的稳定性比结构Ⅱ型水合物强,同时得出H2+TiAAB半笼型水合物的结构最稳定.MD模拟为TiAAB成为一种水合物新型促进剂和新型储氢材料提供了理论依据.Molecular dynamics(MD) simulation is used to study the promotion mechanism of store hydrogen via the hydrate formation. The stable structures and the microcosmic properties of pure H2 hydrate, H2+tetrahydrofuran (THF) hydrate, H2+tetra-n-butylammonium bromide (TBAB) and H2+tetraisoamylammonium bromide (TiAAB) semiclathrate hydrates are investigated systematically. The stabilization energy, EGH, between guest and cavity is calculated. It is shown that the large cavity of hydrate plays a main role of stabilizing hydrate. THF in large cavity can promote the stabilization of hydrogen hydrate and reduce the pressure of formation hydrogen hydrate, which are the same as the experimental results. Compared with the EGH between guest and large cavity, the results are in the order of increase as TiAAB,TBAB,THF,H2. It is concluded that the stability of semiclathrate hydrate is better than the structure Ⅱ hydrate, and H2+TiAAB semiclathrate hydrate is stablest. MD simulation provides helpful information for future TiAAB semiclathrate as a new promoter of forming hydrate and a new hydrogen storage material.
-
Keywords:
- hydrogen clathrate hydrate /
- molecular dynamics simulation /
- hydrogen storage /
- semiclathrate hydrate
[1] Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801
[2] Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54
[3] [4] Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247
[5] [6] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469
[7] [8] [9] Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503
[10] Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024
[11] [12] Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121
[13] [14] [15] Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209
[16] Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645
[17] [18] [19] Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708
[20] [21] Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743
[22] [23] Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440
[24] [25] Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517
[26] Talyzin A 2008 Int. J. Hydrogen Ener. 33 111
[27] [28] [29] Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616
[30] Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214
[31] [32] Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975
[33] [34] [35] Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415
[36] Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113
[37] [38] Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65
[39] [40] [41] Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884
[42] Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092
[43] [44] Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746
[45] [46] Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789
[47] [48] Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463
[49] [50] Nada H 2006 J. Phys. Chem. B 110 16526
[51] [52] [53] Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896
[54] [55] Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608
[56] [57] Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270
[58] Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 物理学报 56 6727]
[59] [60] Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651
[61] [62] [63] Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569
[64] [65] Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]
[66] [67] Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407
[68] [69] Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863
[70] Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507
[71] [72] [73] Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269
[74] [75] Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515
[76] [77] Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206
[78] Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073
[79] [80] [81] Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306
[82] [83] Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129
[84] [85] Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385
[86] Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156
[87] [88] [89] Nos S 1984 J. Chem. Phys. 81 511
[90] Hoover W G 1985 Phys. Rev. A 31 1695
[91] -
[1] Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801
[2] Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54
[3] [4] Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247
[5] [6] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469
[7] [8] [9] Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503
[10] Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024
[11] [12] Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121
[13] [14] [15] Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209
[16] Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645
[17] [18] [19] Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708
[20] [21] Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743
[22] [23] Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440
[24] [25] Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517
[26] Talyzin A 2008 Int. J. Hydrogen Ener. 33 111
[27] [28] [29] Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616
[30] Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214
[31] [32] Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975
[33] [34] [35] Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415
[36] Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113
[37] [38] Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65
[39] [40] [41] Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884
[42] Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092
[43] [44] Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746
[45] [46] Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789
[47] [48] Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463
[49] [50] Nada H 2006 J. Phys. Chem. B 110 16526
[51] [52] [53] Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896
[54] [55] Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608
[56] [57] Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270
[58] Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 物理学报 56 6727]
[59] [60] Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651
[61] [62] [63] Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569
[64] [65] Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]
[66] [67] Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407
[68] [69] Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863
[70] Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507
[71] [72] [73] Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269
[74] [75] Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515
[76] [77] Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206
[78] Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073
[79] [80] [81] Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306
[82] [83] Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129
[84] [85] Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385
[86] Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156
[87] [88] [89] Nos S 1984 J. Chem. Phys. 81 511
[90] Hoover W G 1985 Phys. Rev. A 31 1695
[91]
计量
- 文章访问数: 9269
- PDF下载量: 859
- 被引次数: 0