搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场诱导(MgO)12储氢的从头计算研究

尹跃洪 陈宏善 宋燕

引用本文:
Citation:

电场诱导(MgO)12储氢的从头计算研究

尹跃洪, 陈宏善, 宋燕

The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations

Yin Yue-Hong, Chen Hong-Shan, Song Yan
PDF
导出引用
  • 管状(MgO)12是(MgO)n的幻数团簇, 非常稳定. 为研究电场对其储氢性能的影响, 本文在B3LYP/6-31G**水平上研究了电场中H2在(MgO)12管状结构上的吸附性质. 结果表明 (MgO)12能承受强电场而保持管状结构并被极化, 其偶极矩增大为场强0.01 a.u. 和0.02 a.u.时的9.21和19.39 deb (1 deb=3.3356410-30Cm). H2能稳定吸附在单个Mg/O原子上. 无电场时H2在Mg上为侧位吸附, 而在O上为端位吸附; 电场中, H2在Mg和O上均为端位吸附, 且其分子取向沿外电场方向. 由于(MgO)12 及H2均被电场极化, 因此H2在(MgO)12部分位置上的吸附强度显著提高. H2在3配位的Mg/O上的吸附能由无电场时0.08/0.06 eV分别提高到场强为0.01 a.u.和0.02 a.u.时的0.12/0.11 eV 和0.20/0.26 eV. 电子结构分析表明H2吸附在Mg原子上时, 向团簇转移电荷, 电场极化效应是其吸附能较无电场时增大的主要原因. 吸附在O原子上时, 一方面由于O阴离子极化效应更强; 另一方面, H2从(MgO)12得到电荷, 其价轨道与团簇价轨道重叠形成化学键, 因此电场效应更显著. 电场中(MgO)12最多能吸附16个H2, 相应的质量密度为6.25 wt%.
    (MgO)12 in a tube structure is one of the magic number clusters of (MgO)n and exhibits particular stability. To study the electric field effect on the hydrogen storage properties of (MgO)12, the H2 adsorption behavior on the surface of the tube (MgO)12 in an external electric field is explored at the level of B3LY/6-31G**. In the external electric field, the (MgO)12 keeps the frame of tube structure but with little distortion, implying that the (MgO)12 cluster can sustain the strong electric field for hydrogen storage. The NBO analysis also indicates that (MgO)12 is polarized by the external electric field; and its dipole momenta increase to 9.21 and 19.39 Debye at the field intensities of 0.01 and 0.02 a.u., respectively. Without the external electric field, H2 can be adsorbed on Mg atoms in the end on modes, while on O atoms in the top on modes. When the external electric field is applied, whether H2 is adsorbed on Mg or O atoms, the stable adsorption structures are all top on modes and the molecular orientation of H2 is turned to the direction of the external electric field. Because (MgO)12 and H2 are effectively polarized by the external electric field, the adsorption strength of H2 on some adsorption sites are enhanced remarkably. The adsorption energies of H2 on the three-coordinated Mg/O are promoted from 0.08/0.06 eV in free field to 0.12/0.11 eV and 0.20/0.26 eV at field intensities of 0.01 a.u. and 0.02 a.u., respectively. Electronic structure analysis reveals that when H2 is adsorbed on Mg atoms, this process denotes charges moving to the cluster, and the improvement of adsorption interaction of H2 on Mg atoms is mainly due to the polarization effect. While the adsorption on O atoms, on the one hand implies the polarization effect of O anion is stronger than that of Mg cation, on the other hand, H2 receives charges from (MgO)12 and its valence orbitals also take part in the bonding with the valence orbitals of the cluster. Thus the structures of H2 adsorbed on O atoms are more stable. In an external electric field, (MgO)12 can adsorb sixteen H2 molecules at most, and the corresponding mass density of hydrogen storage reaches 6.25wt%.
      通信作者: 陈宏善, Chenhs@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 20873102)、西北师范大学科技创新工程(批准号: NWNU-KJCXGC03-62)、 甘肃省高等学校基本科研业务费和西北师范大学青年教师科研能力提升计划项目(批准号: NWNU-LKQN-12-30)资助的课题.
      Corresponding author: Chen Hong-Shan, Chenhs@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 20873102), the Innovative Project in Science and Technology of Northwest Normal Universtiy, China (Grant No. NWNU-KJCXGC03-62), the College Research Funding of Gansu Province and the Foundation of Promotion of Researching Ability of Young Teachers of Northwest Normal University, China (Grant No. NWNU-LKQN-12-30).
    [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3392

    [3]

    Hambourger M, Moore G F, Kramer D M, Gust D, Moore A L, Moore T A 2008 Chem. Soc. Rev. 38 25

    [4]

    Kudo A, Miseki Y 2008 Chem. Soc. Rev. 38 253

    [5]

    Esswein A J, Nocera D G 2007 Chem. Rev. 107 4022

    [6]

    Nocera D G 2012 Acc. Chem. Res. 45 767

    [7]

    Jena P 2011 J. Phy. Chem. Lett. 2 206

    [8]

    Struzhkin V V, Militzer B, Mao W L, Mao H, Hemley R J 2007 Chem. Rev. 107 4133

    [9]

    Rowsell J L C, Yaghi O M 2005 Angew. Chem. Inter. Edti. 44 4670

    [10]

    Bhatia S K 2006 Langmuir 22 1688

    [11]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [12]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101(in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [13]

    Ling Z G Tang Y L, Li T, Li Y P, Wei X N 2014 Acta Phys. Sin. 63 023102(in Chinese) [凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2014 物理学报 63 023102]

    [14]

    Zhang Z W, Li J C, Jiang Q 2011 Front. Phys. 6 162

    [15]

    Guo J H, Zhang H 2011 Struc. Chem. 22 1039

    [16]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 PNAS 107 2801

    [17]

    Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463

    [18]

    Jhi S H, Ihm J 2011 MRS Bull. 36 198

    [19]

    Sun X, Jiang Y H, Shang Z S 2010 J. Phys. Chem. C 114 7

    [20]

    Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503

    [21]

    Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452

    [22]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1992 J. Chem. Phys. 97 6871

    [23]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819

    [24]

    Hrmansson K, Baudin M, Ensing B, Alfredsson M, Wojcik M 1998 J. Chem. Phys. 109 7515

    [25]

    Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413

    [26]

    Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B Cond. Matt. 385 144

    [27]

    Dawoud J N, Sallabi A K, Fasfous, II, Jack D B 2009 J. Surf. Sci. Nano. 7 207

    [28]

    Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys. Comp. 480 788

    [29]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601(in Chinese) [陈宏善, 陈华君 2011 物理学报 60 073601]

    [30]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [31]

    Ditchfield R, Hehre W, Pople J A 1971 J. Chem. Phys. 54 724

    [32]

    Frisch M J, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J 2008

    [33]

    Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718

    [34]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851(in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

  • [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3392

    [3]

    Hambourger M, Moore G F, Kramer D M, Gust D, Moore A L, Moore T A 2008 Chem. Soc. Rev. 38 25

    [4]

    Kudo A, Miseki Y 2008 Chem. Soc. Rev. 38 253

    [5]

    Esswein A J, Nocera D G 2007 Chem. Rev. 107 4022

    [6]

    Nocera D G 2012 Acc. Chem. Res. 45 767

    [7]

    Jena P 2011 J. Phy. Chem. Lett. 2 206

    [8]

    Struzhkin V V, Militzer B, Mao W L, Mao H, Hemley R J 2007 Chem. Rev. 107 4133

    [9]

    Rowsell J L C, Yaghi O M 2005 Angew. Chem. Inter. Edti. 44 4670

    [10]

    Bhatia S K 2006 Langmuir 22 1688

    [11]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [12]

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101(in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [13]

    Ling Z G Tang Y L, Li T, Li Y P, Wei X N 2014 Acta Phys. Sin. 63 023102(in Chinese) [凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2014 物理学报 63 023102]

    [14]

    Zhang Z W, Li J C, Jiang Q 2011 Front. Phys. 6 162

    [15]

    Guo J H, Zhang H 2011 Struc. Chem. 22 1039

    [16]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 PNAS 107 2801

    [17]

    Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463

    [18]

    Jhi S H, Ihm J 2011 MRS Bull. 36 198

    [19]

    Sun X, Jiang Y H, Shang Z S 2010 J. Phys. Chem. C 114 7

    [20]

    Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503

    [21]

    Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452

    [22]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1992 J. Chem. Phys. 97 6871

    [23]

    Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819

    [24]

    Hrmansson K, Baudin M, Ensing B, Alfredsson M, Wojcik M 1998 J. Chem. Phys. 109 7515

    [25]

    Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413

    [26]

    Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B Cond. Matt. 385 144

    [27]

    Dawoud J N, Sallabi A K, Fasfous, II, Jack D B 2009 J. Surf. Sci. Nano. 7 207

    [28]

    Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys. Comp. 480 788

    [29]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601(in Chinese) [陈宏善, 陈华君 2011 物理学报 60 073601]

    [30]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [31]

    Ditchfield R, Hehre W, Pople J A 1971 J. Chem. Phys. 54 724

    [32]

    Frisch M J, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J 2008

    [33]

    Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718

    [34]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851(in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

  • [1] 孟现文. 电场方向对一维断裂纳米通道连接处水桥的结构影响研究. 物理学报, 2024, 73(9): 093102. doi: 10.7498/aps.73.20240027
    [2] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [3] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [4] 马丽娟, 韩婷, 高升启, 贾建峰, 武海顺. 单缺陷对Sc, Ti, V修饰石墨烯的结构及储氢性能的影响. 物理学报, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [5] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能. 物理学报, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [6] 周晓锋, 方浩宇, 唐春梅. 三明治结构graphene-2Li-graphene的储氢性能. 物理学报, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [7] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究. 物理学报, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [8] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [9] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [10] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性. 物理学报, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [11] 沈超, 胡雅婷, 周硕, 马晓兰, 李华. 单壁碳纳米管低温及常温下储氢行为的模拟计算研究. 物理学报, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [12] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱. 物理学报, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [13] 赵银昌, 戴振宏, 隋鹏飞, 张晓玲. 二维Li+BC3结构高储氢容量的研究. 物理学报, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [14] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [15] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究. 物理学报, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [16] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [17] 刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖. 单壁BN纳米管和碳纳米管物理吸附储氢性能的理论对比研究. 物理学报, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [18] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱. 物理学报, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] 唐元洪, 林良武, 郭 池. 多壁碳纳米管束储氢机理的X射线吸收谱研究. 物理学报, 2006, 55(8): 4197-4201. doi: 10.7498/aps.55.4197
    [20] 郑 宏, 王绍青, 成会明. 微孔对单壁纳米碳管储氢性能的影响. 物理学报, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
计量
  • 文章访问数:  5020
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-06-05
  • 刊出日期:  2015-10-05

/

返回文章
返回