-
In this article, the grand canonical Monte Carlo (GCMC) method included in GULP software system is adopted to study the hydrogen storage properties of armchair-type single-walled carbon nanotubes (SWNT) with at the low and normal temperatures. The adsorption isotherms with five different radii of SWNT at T=77 K and T=280 K are obtained. The manifold configuration diagrams of hydrogen molecule in the carbon nanotubes with the same caliber at different temperatures and pressures are also given. A further study on hydrogen physisorption is carried out under different pressures and different diameters of carbon nanotubes, separately, at temperatures of 77 K and 280 K, and the results are compared with each other. Finally, we put forward some constructive suggestions about how to improve the adsorption capacity of SWNT according to the results of our GCMC simulation. This may be useful for further investigation.
-
Keywords:
- hydrogen storage /
- single-walled carbon nanotubes /
- grand canonical Monte Carlo simulation /
- GULP
[1] Chen H M 2000 Chin. J. Nat. 22 249 (in Chinese) [成会明 2000 自然杂志 22 249]
[2] Veziroü T N 2008 Energy Convers. Manage. 49 1820
[3] Momirlan M, Veziroglu T N 2005 Int. J. Hydrogen Energy 30 795
[4] Yang S Y 2009 Acta Phys. Sin. 38 181 (in Chinese) [杨身园 2009 物理学报 38 181]
[5] Niu X L, Deng Y F, Li X 2009 Acta Phys. Sin. 58 7317 (in Chinese) [牛雪莲, 邓玉福, 李雪 2009 物理学报 58 7317]
[6] Tang Y H, Lin L W, Guo C 2006 Acta Phys. Sin. 55 4197 (in Chinese) [唐元洪, 林良武, 郭池 2006 物理学报 55 4197]
[7] Yi S P, Zhang H Y, Ou Y Y, Wang Y H, Pang J S 2006 Acta Phys. Sin. 55 2644 (in Chinese) [易双萍, 张海燕, 欧阳玉, 王银海, 庞晋山 2006 物理学报 55 2644]
[8] Zheng H, Wang S Q, Cheng H M 2005 Acta Phys. Sin. 54 4852 (in Chinese) [郑宏, 王绍青, 成会明 2005 物理学报 54 4852]
[9] Dresselhaus M S 2012 Phys. Scr. 146 014002
[10] Han S S, Lee H M 2004 Carbon 42 2169
[11] Dillon A C, Jones K M, Bekkedahl T, Kiang C, Bethune D S, Heben M J 1997 Nature 386 377
[12] Ye Y, Ahn C C, Witham C, Fultz B 1999 Appl. Phys. Lett. 74 2307
[13] Chen P, Wu X, Lin J, Tan K L 1999 Science 285 91
[14] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S 1999 Science 286 1127
[15] Lee S M, Lee Y H 2000 Appl. Phys. Lett. 76 2877
[16] Darkrim F, Levesque D 2000 J. Phys. Chem. B 104 6773
[17] Poirier E, Chahine R, Benard P, Cossement D, Lafi L, Melancon E, Bose T K, Desilets S 2004 Appl. Phys. A 78 961
[18] Yang R T 2000 Carbon 38 623
[19] Hirscher M, Becher M, Haluska M, Zeppelin F V, Chen X H, Dettlaff W U, Roth S 2003 J. Alloys Compd. 356 433
[20] Zhou Y P, Feng K, Sun Y, Zhou L 2003 Prog. Chem. 15 345
[21] Tibbetts G G, Meisner G P, Olk C H 2001 Carbon 39 2291
[22] Gordon P A, Saeger R B 1999 Ind. Eng. Chem. Res. 38 4647
[23] Luxembourg D, Flamant G, Guillot A, Laplaze D 2004 Mater. Sci. Eng. B 108 114
[24] Shen K, Xu H F, Jiang Y B, Pietraß T 2004 Carbon 42 2315
[25] Gale J D 1997 J. Chem. Soc. 93 629
[26] Williams K A, Eklund P C 2000 Chem. Phys. Lett. 320 352
[27] Cheng J R, Yuan X H, Zhao L, Huang D C, Zhao M, Dai L, Ding R 2004 Carbon 42 2019
[28] Cheng J R, Zhang L B, Ding R, Ding Z F, Wang X, Wang Z 2007 Int. J. Hydrogen Energy 32 3402
[29] Hu Y T, Zhou S, Ma X L, Li H 2012 J. Synth. Cryst. 41 287 (in Chinese) [胡雅婷, 周硕, 马晓兰, 李华 2012 人工晶体学报 41 287]
[30] Johnson J K, Zollweg J A, Gubbins K E 1993 Mol. Phys. 78 591
[31] Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J M 2010 Springer Handbook of Nano-technology (3rd Edn.) (Berlin: Springer-Verlag) p47
[32] Hynek S, Fuller W, Bentley J 1997 Int. J. Hydrogen Energy 22 601
-
[1] Chen H M 2000 Chin. J. Nat. 22 249 (in Chinese) [成会明 2000 自然杂志 22 249]
[2] Veziroü T N 2008 Energy Convers. Manage. 49 1820
[3] Momirlan M, Veziroglu T N 2005 Int. J. Hydrogen Energy 30 795
[4] Yang S Y 2009 Acta Phys. Sin. 38 181 (in Chinese) [杨身园 2009 物理学报 38 181]
[5] Niu X L, Deng Y F, Li X 2009 Acta Phys. Sin. 58 7317 (in Chinese) [牛雪莲, 邓玉福, 李雪 2009 物理学报 58 7317]
[6] Tang Y H, Lin L W, Guo C 2006 Acta Phys. Sin. 55 4197 (in Chinese) [唐元洪, 林良武, 郭池 2006 物理学报 55 4197]
[7] Yi S P, Zhang H Y, Ou Y Y, Wang Y H, Pang J S 2006 Acta Phys. Sin. 55 2644 (in Chinese) [易双萍, 张海燕, 欧阳玉, 王银海, 庞晋山 2006 物理学报 55 2644]
[8] Zheng H, Wang S Q, Cheng H M 2005 Acta Phys. Sin. 54 4852 (in Chinese) [郑宏, 王绍青, 成会明 2005 物理学报 54 4852]
[9] Dresselhaus M S 2012 Phys. Scr. 146 014002
[10] Han S S, Lee H M 2004 Carbon 42 2169
[11] Dillon A C, Jones K M, Bekkedahl T, Kiang C, Bethune D S, Heben M J 1997 Nature 386 377
[12] Ye Y, Ahn C C, Witham C, Fultz B 1999 Appl. Phys. Lett. 74 2307
[13] Chen P, Wu X, Lin J, Tan K L 1999 Science 285 91
[14] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S 1999 Science 286 1127
[15] Lee S M, Lee Y H 2000 Appl. Phys. Lett. 76 2877
[16] Darkrim F, Levesque D 2000 J. Phys. Chem. B 104 6773
[17] Poirier E, Chahine R, Benard P, Cossement D, Lafi L, Melancon E, Bose T K, Desilets S 2004 Appl. Phys. A 78 961
[18] Yang R T 2000 Carbon 38 623
[19] Hirscher M, Becher M, Haluska M, Zeppelin F V, Chen X H, Dettlaff W U, Roth S 2003 J. Alloys Compd. 356 433
[20] Zhou Y P, Feng K, Sun Y, Zhou L 2003 Prog. Chem. 15 345
[21] Tibbetts G G, Meisner G P, Olk C H 2001 Carbon 39 2291
[22] Gordon P A, Saeger R B 1999 Ind. Eng. Chem. Res. 38 4647
[23] Luxembourg D, Flamant G, Guillot A, Laplaze D 2004 Mater. Sci. Eng. B 108 114
[24] Shen K, Xu H F, Jiang Y B, Pietraß T 2004 Carbon 42 2315
[25] Gale J D 1997 J. Chem. Soc. 93 629
[26] Williams K A, Eklund P C 2000 Chem. Phys. Lett. 320 352
[27] Cheng J R, Yuan X H, Zhao L, Huang D C, Zhao M, Dai L, Ding R 2004 Carbon 42 2019
[28] Cheng J R, Zhang L B, Ding R, Ding Z F, Wang X, Wang Z 2007 Int. J. Hydrogen Energy 32 3402
[29] Hu Y T, Zhou S, Ma X L, Li H 2012 J. Synth. Cryst. 41 287 (in Chinese) [胡雅婷, 周硕, 马晓兰, 李华 2012 人工晶体学报 41 287]
[30] Johnson J K, Zollweg J A, Gubbins K E 1993 Mol. Phys. 78 591
[31] Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J M 2010 Springer Handbook of Nano-technology (3rd Edn.) (Berlin: Springer-Verlag) p47
[32] Hynek S, Fuller W, Bentley J 1997 Int. J. Hydrogen Energy 22 601
计量
- 文章访问数: 7051
- PDF下载量: 1394
- 被引次数: 0