搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用双点源-P1近似光学模型反演生物组织的光学参量

齐贝贝 刘迎 贾光一 刘小君

引用本文:
Citation:

用双点源-P1近似光学模型反演生物组织的光学参量

齐贝贝, 刘迎, 贾光一, 刘小君

Use of the two-point-source -P1 approximation model for recovery of optical parameters in biological tissue

Qi Bei-Bei, Liu Ying, Jia Guang-Yi, Liu Xiao-Jun
PDF
导出引用
  • 根据空间分辨漫反射的双点源-P1近似理论模型,采用非线性最小二乘法,从反射率的测量数据中反演得到了生物组织的吸收系数a、有效散射系数' s和二阶参量.研究表明,在光源与探测器之间距离大于一个输运平均自由程的情况下,双点源-P1近似能较好地描述光源附近的光辐射分布,而且能够根据参量与' s的关系得到组织的各向异性因子g.这些研究对于生物组织的光学性质测量以及漫反射光谱技术的应用具有重要意义.
    Based on a theoretical model for spatial diffusion reflection with two-point-source -P1 approximation to the radiative transport equation for a semi-infinite homogeneous turbid medium, the optical absorption coefficient a, reduced scattering coefficient ' s, and the second-order parameter of the medium are recovered from the measurement data of the reflectance by the nonlinear least squares method. The results show that the two-point-source -P1 approximation can give more satisfactory results for describing irradiance distribution close to source when the source-detector separation is larger than one transport mean free path. We can also obtain the anisotropy factor g according to the relationship between and ' s. This study is of great significance for the measurement of the optical properties of biological tissues and the application of diffuse reflectance spectroscopy technology.
    • 基金项目: 国家自然科学基金(批准号:60278004)资助的课题.
    [1]

    Zhang Z X 2008 New Technology and Applications of Biomedical Photonics (Beijing: Science Press) (in Chinese) [张镇西 2008 生物医学光子学新技术及应用 (北京:科学出版社)]

    [2]
    [3]

    Tuchin V V 2007 Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (Bellingham: SPIE Press)

    [4]

    Wei H J, Xing D, Wu G Y 2004 Chin. J. Lasers 31 305 (in Chinese) [魏华江、邢 达、巫国勇 2004 中国激光 31 305]

    [5]
    [6]
    [7]

    Venugopalan V, You J S, Tromberg B J 1998 Phys. Rev. E 58 2395

    [8]

    Joseph J H, Wiscombe W J, Weinman J A 1976 J. Atmos. Sci. 33 2452

    [9]
    [10]
    [11]

    Hayakawa C K, Hill B Y, You J S 2004 Appl. Opt. 43 4577

    [12]
    [13]

    You J S, Hayakawa C K, Venugopalan V 2005 Phys. Rev. E 72 021903

    [14]

    Seo I, Hayakawa C K, Venugopalan V 2008 Med. Phys. 35 681

    [15]
    [16]

    Chai C G, Chen Y Q, Li P C, Luo Q M 2007 Appl. Opt. 46 4843

    [17]
    [18]
    [19]

    Chai C G, Chen Y Q, Zeng S Q, Luo Q M 2008 J. Mod. Opt. 55 1375

    [20]

    Kim A D 2004 J. Opt. Soc. Am. A 21 820

    [21]
    [22]
    [23]

    Tian H J, Liu Y, Wang L J, Zhang Z B, Xiao L F 2009 Acta Phys. Sin. 58 243 (in Chinese) [田会娟、刘 迎、王利军、张智卜、肖立峰 2009 物理学报 58 243]

    [24]
    [25]

    Wang R, Liu Y 2010 Chin. J. Lasers 37 1147 (in Chinese) [王 锐、刘 迎 2010 中国激光 37 1147]

    [26]
    [27]

    Groenhuis R A J, Ferwerda H A, Bosch J J T 1983 Appl. Opt. 22 2456

    [28]

    Wang L H, Jacques S L, Zheng L Q 1995 Comput. Meth. Prog. Biol. 47 131

    [29]
  • [1]

    Zhang Z X 2008 New Technology and Applications of Biomedical Photonics (Beijing: Science Press) (in Chinese) [张镇西 2008 生物医学光子学新技术及应用 (北京:科学出版社)]

    [2]
    [3]

    Tuchin V V 2007 Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (Bellingham: SPIE Press)

    [4]

    Wei H J, Xing D, Wu G Y 2004 Chin. J. Lasers 31 305 (in Chinese) [魏华江、邢 达、巫国勇 2004 中国激光 31 305]

    [5]
    [6]
    [7]

    Venugopalan V, You J S, Tromberg B J 1998 Phys. Rev. E 58 2395

    [8]

    Joseph J H, Wiscombe W J, Weinman J A 1976 J. Atmos. Sci. 33 2452

    [9]
    [10]
    [11]

    Hayakawa C K, Hill B Y, You J S 2004 Appl. Opt. 43 4577

    [12]
    [13]

    You J S, Hayakawa C K, Venugopalan V 2005 Phys. Rev. E 72 021903

    [14]

    Seo I, Hayakawa C K, Venugopalan V 2008 Med. Phys. 35 681

    [15]
    [16]

    Chai C G, Chen Y Q, Li P C, Luo Q M 2007 Appl. Opt. 46 4843

    [17]
    [18]
    [19]

    Chai C G, Chen Y Q, Zeng S Q, Luo Q M 2008 J. Mod. Opt. 55 1375

    [20]

    Kim A D 2004 J. Opt. Soc. Am. A 21 820

    [21]
    [22]
    [23]

    Tian H J, Liu Y, Wang L J, Zhang Z B, Xiao L F 2009 Acta Phys. Sin. 58 243 (in Chinese) [田会娟、刘 迎、王利军、张智卜、肖立峰 2009 物理学报 58 243]

    [24]
    [25]

    Wang R, Liu Y 2010 Chin. J. Lasers 37 1147 (in Chinese) [王 锐、刘 迎 2010 中国激光 37 1147]

    [26]
    [27]

    Groenhuis R A J, Ferwerda H A, Bosch J J T 1983 Appl. Opt. 22 2456

    [28]

    Wang L H, Jacques S L, Zheng L Q 1995 Comput. Meth. Prog. Biol. 47 131

    [29]
计量
  • 文章访问数:  3149
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-02
  • 修回日期:  2011-07-26
  • 刊出日期:  2011-06-05

用双点源-P1近似光学模型反演生物组织的光学参量

  • 1. 天津大学理学院,天津 300072;
  • 2. 天津大学精密仪器与电子工程学院,光电信息技术科学教育部重点实验室,天津 300072
    基金项目: 

    国家自然科学基金(批准号:60278004)资助的课题.

摘要: 根据空间分辨漫反射的双点源-P1近似理论模型,采用非线性最小二乘法,从反射率的测量数据中反演得到了生物组织的吸收系数a、有效散射系数' s和二阶参量.研究表明,在光源与探测器之间距离大于一个输运平均自由程的情况下,双点源-P1近似能较好地描述光源附近的光辐射分布,而且能够根据参量与' s的关系得到组织的各向异性因子g.这些研究对于生物组织的光学性质测量以及漫反射光谱技术的应用具有重要意义.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回