搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水系镁离子电池正极材料钠锰氧化物的制备及电化学性能

张永泉 姚安权 杨柳 朱凯 曹殿学

引用本文:
Citation:

水系镁离子电池正极材料钠锰氧化物的制备及电化学性能

张永泉, 姚安权, 杨柳, 朱凯, 曹殿学

Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries

Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue
PDF
HTML
导出引用
  • 近年来镁离子电池正极材料的研发成为研究热点, 提高电池的高倍率性能和循环稳定性成为主要研究目标. 本文采用水热法制备了纳米线和纳米片共混结构的钠锰氧化物(Na0.55Mn2O4·1.5H2O)纳米材料, 并用X−射线衍射和扫描电子显微镜进行表征, 通过充放电测试仪和电化学工作站进行变倍率充放电循环和变扫速循环伏安测试. 结果表明水热反应时间对材料的相结构和形貌组成影响显著, 其中水热反应72 h样品(NMO-72)中纳米片和纳米线形成紧密共混, 纳米片有效填充到纳米线交叉空隙中, 提高了材料的振实密度. 并且NMO-72材料具有更高的放电比容量和倍率循环性能. 在50 mA·g–1电流密度下, NMO-72的放电比容量达到229.1 mAh·g–1; 在1000 mA·g–1电流密度下, NMO-72材料的放电比容量稳定在81 mAh·g–1; 而电流密度再次回到50 mA·g–1时, 其放电比容量稳定保持在164.7 mAh·g–1. 同时, 循环伏安测试表明NMO-72材料与其他材料相比, 具有最佳的镁离子扩散动力学性能, 由此NMO-72材料具有更为优异的可逆比容量、高倍率性能和循环稳定性.
    In recent years, the cathode materials of magnesium ion batteries have become a hot point of research, and the improvement of high-rate performance and cycle stability has become the main research goal. In this paper, sodium manganese oxide (Na0.55Mn2O4·1.5H2O) nanomaterial with a blended structure of nanowires and nanosheets is prepared by the hydrothermal method. The structure and morphology of the material are analyzed by X-ray diffraction and scanning electron microscopy. The variable rate charge-discharge curves and variable scan rate cyclic voltammetry curves are obtained by a battery tester and electrochemical workstation, respectively. The results show that the hydrothermal reaction time has significant effects on phase structure and morphology composition of the material. The nanosheets and nanowires in the sample form a closely blend by 72-h hydrothermal reaction (NMO-72), and the nanosheets effectively fill into the intersecting space of the nanowires. In this way, the tap density of the material is improved. More importantly, NMO-72 has higher discharge specific capacity and rate cycling performance. At a current density of 50 mA·g–1, the discharge specific capacity of NMO-72 reaches 229.1 mAh·g–1. At a current density of 1000 mA·g–1, the discharge specific capacity of the NMO-72 stabilizes at 81 mAh·g–1. When the current density returns to 50 mA·g–1 again, the discharge specific capacity remains stable at 164.7 mAh·g–1. Besides, the cyclic voltammetry test shows that the NMO-72 material has more excellent magnesium ion diffusion kinetic performance than other materials. Therefore, the NMO-72 material has more excellent reversible specific capacity, high rate performance and cycling stability.
      通信作者: 杨柳, lyang@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704089, 51672056)、黑龙江省自然科学基金(批准号: LH2020E093)、黑龙江省普通本科高等学校青年创新人才培养计划(批准号: UNPYSCT-2018216)、中国博士后科学基金(批准号: 2017M611355)、中央高校基本科研业务费(批准号: 3072021CFT0402)和黑龙江省留学回国人员择优资助的课题
      Corresponding author: Yang Liu, lyang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704089, 51672056), the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2020E093), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2018216), the China Postdoctoral Science Foundation (Grant No. 2017M611355), Fundamental Research Funds for the Central Universities (Grant No. 3072021CFT0402), and Merit-based funding for returning overseas students in Heilongjiang Province
    [1]

    Muldoon J, Bucur C B, Gregory T 2014 Chem. Rev. 114 11683Google Scholar

    [2]

    Huie M M, Bock D C, Takeuchi E S, Marschilok A C, Takeuchi K J 2015 Coord. Chem. Rev. 287 15Google Scholar

    [3]

    刘文龙, 黄可贤, 周学俊, 李驰麟 2020 硅酸盐学报 48 978Google Scholar

    Liu W L, Huang K X, Zhou X J, Li C L 2020 J. Chin. Ceram. Soc. 48 978Google Scholar

    [4]

    刘凡凡, 王田甜, 范丽珍 2020 硅酸盐学报 48 947Google Scholar

    Liu F F, Wang T T, Fan L Z 2020 J. Chin. Ceram. Soc. 48 947Google Scholar

    [5]

    苏硕剑, 努丽燕娜, 非路热·吐尔逊, 杨军, 王久林 2015 物理化学学报 31 111Google Scholar

    Su S J, Nuli Y N, Feilure T, Yang J, Wang J L 2015 Acta Phys. Chim. Sin. 31 111Google Scholar

    [6]

    Song J, Sahadeo E, Noked M, Lee S B 2016 J. Phys. Chem. Lett. 7 1736Google Scholar

    [7]

    Xu M, Lei S, Qi J, Dou Q, Liu L, Lu Y, Huang Q, Shi S, Yan X 2018 ACS Nano 12 3733Google Scholar

    [8]

    Xu C, Chen Y, Shi S, Li J, Kang F, Su D 2015 Sci. Rep. 5 14120Google Scholar

    [9]

    Zhang Y, Liu G, Zhang C, Chi Q, Zhang T, Feng Y, Zhu K, Zhang Y, Chen Q, Cao D 2020 Chem. Eng. J. 392 123652Google Scholar

    [10]

    Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K T, Liu J 2016 Nat. Energy 1 16039Google Scholar

    [11]

    Liang Y, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, Yao Y 2017 Nat. Mater. 16 841Google Scholar

    [12]

    Zhang H, Ye K, Zhu K, Cang R, Wang X, Wang G, Cao D 2017 ACS Sustainable Chem. Eng. 5 6727Google Scholar

    [13]

    Arthur T S, Zhang R, Ling C, Glans P A, Fan X, Guo J, Mizuno F 2014 ACS Appl. Mater. Interfaces 6 7004Google Scholar

    [14]

    Liu G, Chi Q, Zhang Y, Chen Q, Zhang C, Zhu K, Cao D 2018 Chem. Commun. 54 9474Google Scholar

    [15]

    Liu M, Jain A, Rong Z, Qu X, Canepa P, Malik R, Ceder G, Persson K A 2016 Energy Environ. Sci. 9 3201Google Scholar

    [16]

    Saha P, Jampani P H, Datta M K, Hong D, Gattu B, Patel P, Kadakia K S, Manivannan A, Kumta P N 2017 Nano Res. 10 4415Google Scholar

    [17]

    NuLi Y, Yang J, Li Y, Wang J 2010 Chem. Commun. 46 3794Google Scholar

    [18]

    李卓, 宁哲, 刘坤, 王一雍, 韩露, 路金林 2017 中国冶金 27 1Google Scholar

    Li Z, Ning Z, Liu K, Wang Y Y, Han L, Lu J L 2017 China Metall. 27 1Google Scholar

    [19]

    李艳阳, 熊跃, 张建民, 陈卫华 2015 材料导报 29 50Google Scholar

    Li Y Y, Xiong Y, Zhang J M, Chen W H 2015 Mater. Rep. 29 50Google Scholar

    [20]

    Zhang J, He T, Zhang W, Sheng J Z, Amiinu I S, Kou Z K, Yang J L, Mai L Q, Mu S C 2017 Adv. Energy Mater. 7 1602092Google Scholar

    [21]

    杨顺毅, 王先友, 魏建良, 李秀琴, 唐安平 2008 物理化学学报 24 1669Google Scholar

    Yang S Y, Wang X Y, Wie J L, Li X Q, Tang A P 2008 Acta Phys. Chim. Sin. 24 1669Google Scholar

    [22]

    Xu M W, Niu Y B, Li Y T, Bao S J, Li C M 2014 RSC Adv. 4 30340Google Scholar

    [23]

    Lv W J, Huang Z G, Yin Y X, Yao H R, Zhu H L, Guo Y G 2019 ChemNanoMat 5 1253Google Scholar

    [24]

    Zheng P, Su J X, Wang Y B, Zhou W, Song J J, Su Q M, Reeves-McLaren N, Guo S W 2020 ChemSusChem 13 1793Google Scholar

    [25]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 物理学报 67 120601Google Scholar

    Lu Y X, Zhao C L, Rong X H, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [26]

    Zhang Q N, Levi M D, Dou Q Y, Lu Y L, Chai Y G, Lei S L, Ji H X, Liu B, Bu X D, Ma P J, Yan X B 2019 Adv. Energy Mater. 9 1802707Google Scholar

    [27]

    Li J N, Yu J, Amiinu I S, Zhang J, Sheng J Z, Kou Z K, Wang Z, Yu Q, Mai L Q, Mu S C 2017 J. Mater. Chem. A 5 18509Google Scholar

    [28]

    Chua R, Cai Y, Kou Z K, Satish R, Ren H, Chan J J, Zhang L P, Morris S A, Bai J M, Srinivasan M 2019 Chem. Eng. J. 370 742Google Scholar

    [29]

    Wang X Y, Qin X H, Lu Q Q, Han M M, Omar A, Mikhailova D 2020 Chin. J. Chem. Eng. 28 2214Google Scholar

    [30]

    Xiao Y, Zhu Y F, Xiang W, Wu Z G, Li Y C, Lai J, Li S, Wang E, Yang Z G, Xu C L, Zhong B H, Guo X D 2020 Angew. Chem. Int. Ed. 59 1491Google Scholar

    [31]

    Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E 2015 Angew. Adv. Sci. 2 1500072Google Scholar

  • 图 1  制备样品的XRD曲线

    Fig. 1.  XRD curves of all samples.

    图 2  制备样品的SEM照片 (a) NMO-60; (b) NMO-72; (c) NMO-84. 插图为局部放大的SEM照片

    Fig. 2.  (a) NMO-60, (b) NMO-72 and (c) NMO-84 SEM images of all samples. The insets are the enlarged SEM images.

    图 3  制备样品的EDS图片

    Fig. 3.  EDS images of all samples.

    图 4  制备样品在不同倍率下的充放电循环性能

    Fig. 4.  Charge-discharge cycling performance of all samples at different rates.

    图 5  不同倍率下的充放电曲线 (a) NMO-60; (b) NMO-72; (c) NMO-84

    Fig. 5.  Charge-discharge curves at different rates: (a) NMO-60; (b) NMO-72; (c) NMO-84.

    图 6  不同扫描速率下的循环伏安曲线 (a) NMO-60; (b) NMO-72

    Fig. 6.  CV curves of (a) NMO-60 and (b) NMO-72 at various scan rates.

  • [1]

    Muldoon J, Bucur C B, Gregory T 2014 Chem. Rev. 114 11683Google Scholar

    [2]

    Huie M M, Bock D C, Takeuchi E S, Marschilok A C, Takeuchi K J 2015 Coord. Chem. Rev. 287 15Google Scholar

    [3]

    刘文龙, 黄可贤, 周学俊, 李驰麟 2020 硅酸盐学报 48 978Google Scholar

    Liu W L, Huang K X, Zhou X J, Li C L 2020 J. Chin. Ceram. Soc. 48 978Google Scholar

    [4]

    刘凡凡, 王田甜, 范丽珍 2020 硅酸盐学报 48 947Google Scholar

    Liu F F, Wang T T, Fan L Z 2020 J. Chin. Ceram. Soc. 48 947Google Scholar

    [5]

    苏硕剑, 努丽燕娜, 非路热·吐尔逊, 杨军, 王久林 2015 物理化学学报 31 111Google Scholar

    Su S J, Nuli Y N, Feilure T, Yang J, Wang J L 2015 Acta Phys. Chim. Sin. 31 111Google Scholar

    [6]

    Song J, Sahadeo E, Noked M, Lee S B 2016 J. Phys. Chem. Lett. 7 1736Google Scholar

    [7]

    Xu M, Lei S, Qi J, Dou Q, Liu L, Lu Y, Huang Q, Shi S, Yan X 2018 ACS Nano 12 3733Google Scholar

    [8]

    Xu C, Chen Y, Shi S, Li J, Kang F, Su D 2015 Sci. Rep. 5 14120Google Scholar

    [9]

    Zhang Y, Liu G, Zhang C, Chi Q, Zhang T, Feng Y, Zhu K, Zhang Y, Chen Q, Cao D 2020 Chem. Eng. J. 392 123652Google Scholar

    [10]

    Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K T, Liu J 2016 Nat. Energy 1 16039Google Scholar

    [11]

    Liang Y, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, Yao Y 2017 Nat. Mater. 16 841Google Scholar

    [12]

    Zhang H, Ye K, Zhu K, Cang R, Wang X, Wang G, Cao D 2017 ACS Sustainable Chem. Eng. 5 6727Google Scholar

    [13]

    Arthur T S, Zhang R, Ling C, Glans P A, Fan X, Guo J, Mizuno F 2014 ACS Appl. Mater. Interfaces 6 7004Google Scholar

    [14]

    Liu G, Chi Q, Zhang Y, Chen Q, Zhang C, Zhu K, Cao D 2018 Chem. Commun. 54 9474Google Scholar

    [15]

    Liu M, Jain A, Rong Z, Qu X, Canepa P, Malik R, Ceder G, Persson K A 2016 Energy Environ. Sci. 9 3201Google Scholar

    [16]

    Saha P, Jampani P H, Datta M K, Hong D, Gattu B, Patel P, Kadakia K S, Manivannan A, Kumta P N 2017 Nano Res. 10 4415Google Scholar

    [17]

    NuLi Y, Yang J, Li Y, Wang J 2010 Chem. Commun. 46 3794Google Scholar

    [18]

    李卓, 宁哲, 刘坤, 王一雍, 韩露, 路金林 2017 中国冶金 27 1Google Scholar

    Li Z, Ning Z, Liu K, Wang Y Y, Han L, Lu J L 2017 China Metall. 27 1Google Scholar

    [19]

    李艳阳, 熊跃, 张建民, 陈卫华 2015 材料导报 29 50Google Scholar

    Li Y Y, Xiong Y, Zhang J M, Chen W H 2015 Mater. Rep. 29 50Google Scholar

    [20]

    Zhang J, He T, Zhang W, Sheng J Z, Amiinu I S, Kou Z K, Yang J L, Mai L Q, Mu S C 2017 Adv. Energy Mater. 7 1602092Google Scholar

    [21]

    杨顺毅, 王先友, 魏建良, 李秀琴, 唐安平 2008 物理化学学报 24 1669Google Scholar

    Yang S Y, Wang X Y, Wie J L, Li X Q, Tang A P 2008 Acta Phys. Chim. Sin. 24 1669Google Scholar

    [22]

    Xu M W, Niu Y B, Li Y T, Bao S J, Li C M 2014 RSC Adv. 4 30340Google Scholar

    [23]

    Lv W J, Huang Z G, Yin Y X, Yao H R, Zhu H L, Guo Y G 2019 ChemNanoMat 5 1253Google Scholar

    [24]

    Zheng P, Su J X, Wang Y B, Zhou W, Song J J, Su Q M, Reeves-McLaren N, Guo S W 2020 ChemSusChem 13 1793Google Scholar

    [25]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 物理学报 67 120601Google Scholar

    Lu Y X, Zhao C L, Rong X H, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [26]

    Zhang Q N, Levi M D, Dou Q Y, Lu Y L, Chai Y G, Lei S L, Ji H X, Liu B, Bu X D, Ma P J, Yan X B 2019 Adv. Energy Mater. 9 1802707Google Scholar

    [27]

    Li J N, Yu J, Amiinu I S, Zhang J, Sheng J Z, Kou Z K, Wang Z, Yu Q, Mai L Q, Mu S C 2017 J. Mater. Chem. A 5 18509Google Scholar

    [28]

    Chua R, Cai Y, Kou Z K, Satish R, Ren H, Chan J J, Zhang L P, Morris S A, Bai J M, Srinivasan M 2019 Chem. Eng. J. 370 742Google Scholar

    [29]

    Wang X Y, Qin X H, Lu Q Q, Han M M, Omar A, Mikhailova D 2020 Chin. J. Chem. Eng. 28 2214Google Scholar

    [30]

    Xiao Y, Zhu Y F, Xiang W, Wu Z G, Li Y C, Lai J, Li S, Wang E, Yang Z G, Xu C L, Zhong B H, Guo X D 2020 Angew. Chem. Int. Ed. 59 1491Google Scholar

    [31]

    Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E 2015 Angew. Adv. Sci. 2 1500072Google Scholar

  • [1] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能. 物理学报, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [2] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响. 物理学报, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [4] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [5] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [7] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [8] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [9] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [10] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [11] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [12] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [13] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [14] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [15] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  6417
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-03-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回