搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co2SnO4/Graphene复合材料的制备与电化学性能研究

陈畅 汝强 胡社军 安柏楠 宋雄

引用本文:
Citation:

Co2SnO4/Graphene复合材料的制备与电化学性能研究

陈畅, 汝强, 胡社军, 安柏楠, 宋雄

Preparation and electrochemical properties of Co2SnO4/graphene composites

Chen Chang, Ru Qiang, Hu She-Jun, An Bo-Nan, Song Xiong
PDF
导出引用
  • 实验首先采用改进的Hummers法制备氧化石墨,然后以氧化石墨烯为前驱体,通过水热法将锡酸钴纳米颗粒均匀镶嵌在石墨烯薄膜基片上,最终获得Co2SnO4/Graphene镶嵌复合材料. 采用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征,通过恒电流充放电(CC)、循环伏安法(CV)与交流阻抗法(EIS)测试了材料的电化学性能. 实验结果表明,石墨烯良好的分散性及较高的电子导电率,可以提高锡酸钴材料的电化学性能,材料首次可逆容量达到1415.2 mA·h/g,50次循环后仍能保持469.7 mA·h/g的放电比容量.
    Co2SnO4/graphene composite has been prepared by multi-step synthetic process. Firstly, the formation of Co2SnO4 and the reduction of graphene oxide (GO) occur simultaneously during the hydrothermal process and the Co2SnO4 particles are uniformly embedded in the film-like graphene to form a mosaic structure. To characterize the phase and morphology of the composite material, X-ray diffraction (XRD), scanning electron microscope (SEM) are used. The constant current charge and discharge (CC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are also used to test the electrochemical performance of Co2SnO4/graphene composite. Results show that graphene can effectively improve the electrochemical performance of Co2SnO4/graphene composite by its good dispersibility and high electrical conductivity. The composite material exhibits a first discharge specific capacity of 1415.2 mA·h/g with the specific capacity still higher than 469.7 mA·h/g after 50 cycles.
    • 基金项目: 国家自然科学基金(批准号:51101062,51171065)、广州市科技计划项目(批准号:2011J4100075)、广东高校优秀青年创新人才培育项目(批准号:LYM09052)、广东省自然科学基金重点项目(批准号:S2012020010937,10351063101000001)和华南师范大学研究生科研创新基金(批准号:2013KYJJ039)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101062, 51171065), the Science and Technology Project of Guangzhou City, China (Grant No. 2011J4100075), the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM09052), the Natural Science Foundation of Guangdong Province, China (Grant Nos. S2012020010937, 10351063101000001), and the Graduate Student Research Innovation Fund of South China Normal University (Grant No. 2013KYJJ039).
    [1]

    Ostrovskii D, Scrosati B, Jacobsson P 1995 Nature 103 10

    [2]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [3]

    Cabana J, Monconduit L, Larcher D, Palacin MR 2010 Adv. Mater. 22 E170

    [4]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 J. Alloys Comp. 575 246

    [5]

    Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F 2013 Small 9 1237

    [6]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [7]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226(in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226]

    [8]

    Zheng M T, Liu Y L, Xiao Y, Dong H W, Feng H B, Zhang H R, Lei B F 2013 ACS Appl. Mater. Inter. 5 12561

    [9]

    Needham S A, Wang G X, Konstantinov K, Tournayre Y, Lao Z, Liu H K 2006 Electrochem. Solid. St. 9 A315

    [10]

    Dong X C, Xu H, Wang X W, Huang Y X, Mary B. Chan-Park, Zhang H, Wang L H, Huang W, Chen P 2012 ACS Nano. 6 3206

    [11]

    Cheng J L, Xin H L, Zheng H M, Wang B 2013 J. Power Sources 232 152

    [12]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [13]

    Courtney I A, Dahn J R 1997 J. Electrochem. Soc. 144 2943

    [14]

    Wang G, Gao X P, Shen P W 2009 J. Power Sources 192 719

    [15]

    Yue Q, Ning D, Hui Z, Ping W, Yang D R 2011 J. Power Sources 196 10234

    [16]

    Wang G, Liu Z Y, Liu P 2011 Electrochim. Acta. 56 9515

    [17]

    Wang R, He F, Wan Y Z, Qi Y 2012 J. Alloys Compd. 514 35

    [18]

    Zhao D L, Zhang J M, Li X, Shen Z M 2010 J. Alloys Compd. 505 712

    [19]

    Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M, Charalambopoulou G 2011 J. Alloys Compd. 509 S705

    [20]

    Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S 2011 Science 332 1537

    [21]

    Yeh T S, Wu Y S and LeeY H 2012 J. Alloys Compd. 515 90

    [22]

    Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S 2010 Adv. Mater. 22 3906

    [23]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [24]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [25]

    Geim A K 2009 Science 324 1530

    [26]

    Hernandez Y, Nicolosi V, Lotya M 2008 Nat. Nanotechnol. 3 563

    [27]

    Uhm S, Tuyen N H, Lee J 2011 Electrochem. Commun. 13 677

    [28]

    Vincent C T, Matthew J A, Yang Y, Richard B K 2009 Nature Nanotech. 329 25

    [29]

    McAllister M J, Li J L, Adamson D H, Schniepp H C 2007 Chem. Mater. 19 4396

    [30]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [31]

    Wang X L, Han W Q 2010 Appl. Mater. Interfaces 2 3709

    [32]

    Li Z P, Men C L, Wang W, Cao J 2014 Chin. Phys. B 23 057205

    [33]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 112 255

    [34]

    Chen D, Feng H B, Li J H 2012 Chem. Rev. 112 6027

    [35]

    Qi Y, Du N, Zhang H, Wu P, Yang D R 2011 J. Power Sources 196 10234

    [36]

    Chang C C, Liu S J, Wu J J, Yang C H 2007 J. Phys. Chem. C 111 16423

    [37]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [38]

    Sharma Y, Sharma N, Rao G V S, Chowdari B V R 2007 J. Power Sources 173 495

    [39]

    Chen J S, Cheah Y L, Chen Y T, Jayaprakash N, Madhavi S, Yang Y H, Lou X W 2009 J. Phys. Chem. C 113 20504

    [40]

    Wu P, Du N, Zhang H, Yu J X, Yang D R 2011 J. Phys. Chem. C 115 3612

    [41]

    Lavela P, Ortiz G F, Tirado J L, Zhecheva E, Stoyanova R, Ivanova S 2007 J. Phys. Chem. C 111 14238

    [42]

    Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A 2002 Chem. Mater. 14 4155

    [43]

    Du N, Zhang H, Chen B D, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D R, Huang X H, Tu J P 2007 Adv. Mater. 19 4505

    [44]

    Xue M Z, Fu Z W 2006 Electrochem. Solid-State Lett. 9 A468

    [45]

    Alcantara R, Ortiz G F, Lavela P, Tirado J L 2006 Electrochem. Commun. 8 731

    [46]

    Choi H C, Lee S Y, Kim S B, Kim M G, Lee M K, Shin H J, Lee J S 2002 J. Phys. Chem. B 106 9252

    [47]

    Liu H C, Yen S K 2007 J. Power Sources 166 478

    [48]

    Maier J 2005 Nat. Mater. 4 805

    [49]

    Huang X H, Tu J P, Zhang C Q, Xiang J Y 2007 Electrochem. Commun. 9 1180

    [50]

    Yang S B, Song H H, Chen X H 2006 Electrochem. Commun. 8 137

    [51]

    Zhang J J, Liang J W, Zhu Y C, Wei D H, Fan L, Qian Y T 2014 J. Mater. Chem. A 2 2728

  • [1]

    Ostrovskii D, Scrosati B, Jacobsson P 1995 Nature 103 10

    [2]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [3]

    Cabana J, Monconduit L, Larcher D, Palacin MR 2010 Adv. Mater. 22 E170

    [4]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 J. Alloys Comp. 575 246

    [5]

    Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F 2013 Small 9 1237

    [6]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [7]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226(in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226]

    [8]

    Zheng M T, Liu Y L, Xiao Y, Dong H W, Feng H B, Zhang H R, Lei B F 2013 ACS Appl. Mater. Inter. 5 12561

    [9]

    Needham S A, Wang G X, Konstantinov K, Tournayre Y, Lao Z, Liu H K 2006 Electrochem. Solid. St. 9 A315

    [10]

    Dong X C, Xu H, Wang X W, Huang Y X, Mary B. Chan-Park, Zhang H, Wang L H, Huang W, Chen P 2012 ACS Nano. 6 3206

    [11]

    Cheng J L, Xin H L, Zheng H M, Wang B 2013 J. Power Sources 232 152

    [12]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M 2000 Nature 407 496

    [13]

    Courtney I A, Dahn J R 1997 J. Electrochem. Soc. 144 2943

    [14]

    Wang G, Gao X P, Shen P W 2009 J. Power Sources 192 719

    [15]

    Yue Q, Ning D, Hui Z, Ping W, Yang D R 2011 J. Power Sources 196 10234

    [16]

    Wang G, Liu Z Y, Liu P 2011 Electrochim. Acta. 56 9515

    [17]

    Wang R, He F, Wan Y Z, Qi Y 2012 J. Alloys Compd. 514 35

    [18]

    Zhao D L, Zhang J M, Li X, Shen Z M 2010 J. Alloys Compd. 505 712

    [19]

    Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M, Charalambopoulou G 2011 J. Alloys Compd. 509 S705

    [20]

    Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S 2011 Science 332 1537

    [21]

    Yeh T S, Wu Y S and LeeY H 2012 J. Alloys Compd. 515 90

    [22]

    Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S 2010 Adv. Mater. 22 3906

    [23]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [24]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [25]

    Geim A K 2009 Science 324 1530

    [26]

    Hernandez Y, Nicolosi V, Lotya M 2008 Nat. Nanotechnol. 3 563

    [27]

    Uhm S, Tuyen N H, Lee J 2011 Electrochem. Commun. 13 677

    [28]

    Vincent C T, Matthew J A, Yang Y, Richard B K 2009 Nature Nanotech. 329 25

    [29]

    McAllister M J, Li J L, Adamson D H, Schniepp H C 2007 Chem. Mater. 19 4396

    [30]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [31]

    Wang X L, Han W Q 2010 Appl. Mater. Interfaces 2 3709

    [32]

    Li Z P, Men C L, Wang W, Cao J 2014 Chin. Phys. B 23 057205

    [33]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 112 255

    [34]

    Chen D, Feng H B, Li J H 2012 Chem. Rev. 112 6027

    [35]

    Qi Y, Du N, Zhang H, Wu P, Yang D R 2011 J. Power Sources 196 10234

    [36]

    Chang C C, Liu S J, Wu J J, Yang C H 2007 J. Phys. Chem. C 111 16423

    [37]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [38]

    Sharma Y, Sharma N, Rao G V S, Chowdari B V R 2007 J. Power Sources 173 495

    [39]

    Chen J S, Cheah Y L, Chen Y T, Jayaprakash N, Madhavi S, Yang Y H, Lou X W 2009 J. Phys. Chem. C 113 20504

    [40]

    Wu P, Du N, Zhang H, Yu J X, Yang D R 2011 J. Phys. Chem. C 115 3612

    [41]

    Lavela P, Ortiz G F, Tirado J L, Zhecheva E, Stoyanova R, Ivanova S 2007 J. Phys. Chem. C 111 14238

    [42]

    Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A 2002 Chem. Mater. 14 4155

    [43]

    Du N, Zhang H, Chen B D, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D R, Huang X H, Tu J P 2007 Adv. Mater. 19 4505

    [44]

    Xue M Z, Fu Z W 2006 Electrochem. Solid-State Lett. 9 A468

    [45]

    Alcantara R, Ortiz G F, Lavela P, Tirado J L 2006 Electrochem. Commun. 8 731

    [46]

    Choi H C, Lee S Y, Kim S B, Kim M G, Lee M K, Shin H J, Lee J S 2002 J. Phys. Chem. B 106 9252

    [47]

    Liu H C, Yen S K 2007 J. Power Sources 166 478

    [48]

    Maier J 2005 Nat. Mater. 4 805

    [49]

    Huang X H, Tu J P, Zhang C Q, Xiang J Y 2007 Electrochem. Commun. 9 1180

    [50]

    Yang S B, Song H H, Chen X H 2006 Electrochem. Commun. 8 137

    [51]

    Zhang J J, Liang J W, Zhu Y C, Wei D H, Fan L, Qian Y T 2014 J. Mater. Chem. A 2 2728

  • [1] 蒋梅燕王平陈爱盛陈成克李晓鲁少华胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220715
    [2] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [5] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [7] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [8] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [10] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [11] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [12] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [14] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [18] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [19] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [20] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究. 物理学报, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
计量
  • 文章访问数:  3193
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07
  • 修回日期:  2014-06-03
  • 刊出日期:  2014-10-05

Co2SnO4/Graphene复合材料的制备与电化学性能研究

  • 1. 广东省量子调控工程与材料重点实验室, 华南师范大学物理与电信工程学院, 广州 510006;电化学储能材料与技术教育部工程研究中心, 广州 510006
    基金项目: 国家自然科学基金(批准号:51101062,51171065)、广州市科技计划项目(批准号:2011J4100075)、广东高校优秀青年创新人才培育项目(批准号:LYM09052)、广东省自然科学基金重点项目(批准号:S2012020010937,10351063101000001)和华南师范大学研究生科研创新基金(批准号:2013KYJJ039)资助的课题.

摘要: 实验首先采用改进的Hummers法制备氧化石墨,然后以氧化石墨烯为前驱体,通过水热法将锡酸钴纳米颗粒均匀镶嵌在石墨烯薄膜基片上,最终获得Co2SnO4/Graphene镶嵌复合材料. 采用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征,通过恒电流充放电(CC)、循环伏安法(CV)与交流阻抗法(EIS)测试了材料的电化学性能. 实验结果表明,石墨烯良好的分散性及较高的电子导电率,可以提高锡酸钴材料的电化学性能,材料首次可逆容量达到1415.2 mA·h/g,50次循环后仍能保持469.7 mA·h/g的放电比容量.

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回