搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg掺杂提升钠离子电池正极材料高电压循环性能

许伟良 党荣彬 杨佯 郭秋卜 丁飞翔 韩帅 唐小涵 刘渊 左战春 王晓琦 杨瑞 金旭 容晓晖 洪捐 许宁 胡勇胜

引用本文:
Citation:

Mg掺杂提升钠离子电池正极材料高电压循环性能

许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜

Magnesium doping improved characteristics of high voltage cycle of layered cathode of sodium ion battery

Xu Wei-Liang, Dang Rong-Bin, Yang Yang, Guo Qiu-Bo, Ding Fei-Xiang, Han Shuai, Tang Xiao-Han, Liu Yuan, Zuo Zhan-Chun, Wang Xiao-Qi, Yang Rui, Jin Xu, Rong Xiao-Hui, Hong Juan, Xu Ning, Hu Yong-Sheng
PDF
HTML
导出引用
  • 钠离子电池层状氧化物正极材料具有高容量、易合成等优势, 表现出巨大的应用潜力. 为了开发出高容量、长循环的正极材料, 本文提出对NaNi0.4Cu0.1Mn0.4Ti0.1O2 (NCMT)用Mg2+部分取代Ni2+的改性策略, 设计并合成了高容量、长循环的NaNi0.35Mg0.05Cu0.1Mn0.4Ti0.1O2 (NCMT-Mg)正极材料. 该材料在2.4—4.3 V电压范围内, 显示165 mAh·g–1的高可逆比容量. 在0.1 C的倍率下循环350周后, 仍有111 mAh·g–1的可逆比容量, 容量保持率为67.3%, 相较于未掺杂的原始样品提升了约13%. 本文对其进行了系统表征并揭示了其高电压循环稳定的机理, 为开发出高性能钠离子正极材料提供了重要参考.
    Driven by global demand for new energy, Li-ion batteries (LIBs) have developed rapidly due to their competitive performance. Although LIBs show the advantages of high capacity and good cycling stability, their disadvantages such as uneven distribution of lithium resources are gradually exposed. Therefore, with abundant reserves, Na-ion batteries (NIB) have become one of the most promising solutions to make up for the deficiency of Li-ion battery. The NIBs layered oxide cathodes have the most potential applications of cathode material due to their high specific capacity (167 mAh·g–1 in 2.4–4.3 V) and simple synthesis method. However, improving the cycling stability of layered cathode materials is one of the keys to their large-scale industrialization. To develop high capacity and cycling stability cathode materials, the Mg2+ is substituted for Ni2+ in NaNi0.4Cu0.1Mn0.4Ti0.1O2 (NCMT), thereby obtaining a NaNi0.35Mg0.05Cu0.1Mn0.4Ti0.1O2 (NCMT-Mg) cathode material. The NCMT-Mg has a high reversible specific capacity of 165 mAh·g–1 in a voltage window of 2.4–4.3 V. The reversible specific capacity of about 110 mAh·g–1 at 0.1 C after 350 cycles with a capacity retention of 67.3% is about 13% higher than the counterpart of NCMT. The irreversible reaction is suppressed from P'3 phase to X phase for NCMT. The ex-XRD spectrometers further prove that the NCMT-Mg shows a P3 and X mixed phase after being initially charged to 4.3 V, but the NCMT shows an X phase. The irreversible phase transition is suppressed to increase the cycling stability. The inactive Mg2+ replaces Ni2+, reducing the charge compensation and stabilizing the structure, the inactive Mg2+ can activate the charge compensation of Ni2+/Cu2+. The electrochemical activity increases from 77% to 86%. The high capacity and excellent cycling stability prove that the NCMT-Mg structure remains intact after various current rates have been tested. The long cycling stability mechanism is further systematically studied by using various technologies. The present work will provide an important reference for developing high-performance Na-ion cathode materials.
      通信作者: 容晓晖, rong@iphy.ac.cn ; 洪捐, jameshong@ycit.cn ; 许宁, xuning196402@163.com
    • 基金项目: 国家自然科学基金(批准号: 51805466)和中国石油研究基金资助的课题.
      Corresponding author: Rong Xiao-Hui, rong@iphy.ac.cn ; Hong Juan, jameshong@ycit.cn ; Xu Ning, xuning196402@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51805466) and the R&D Department of PetroChina.
    [1]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 物理学报 67 120601Google Scholar

    Lu Y X, Zhao C L, Rong X H, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [2]

    Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Yong-Sheng H, Chen L 2017 Energy Storage Mater 7 130Google Scholar

    [3]

    Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F 2017 ACS Appl. Mater. Interfaces 9 27936Google Scholar

    [4]

    Braconnier J, Delmas C, Fouassier C, Hagenmuller P 1980 Mater. Res. Bull. 15 1797Google Scholar

    [5]

    Nagelberg A, Worrell W 1979 J. Solid State Chem. 29 345Google Scholar

    [6]

    Whittingham M 1978 Prog Solid State Chem. 12 41Google Scholar

    [7]

    Whittingham M S 1976 Science 192 1126Google Scholar

    [8]

    Sun Y, Guo S, Zhou H 2019 Energy Environ. Sci. 12 825Google Scholar

    [9]

    Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S 2018 Adv. Energy Mater. 8 1703415Google Scholar

    [10]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X 2019 Small 15 1805381Google Scholar

    [11]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Adv. Energy Mater. 8 1702869Google Scholar

    [12]

    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B 2013 Angew. Chem. Int. Ed. 52 1964Google Scholar

    [13]

    Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J. 2014 Angew. Chem. Int. Ed. 53 5892Google Scholar

    [14]

    Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S, Chen L 2017 Small 13 1701835Google Scholar

    [15]

    Wang Y S, Xiao R J, Hu Y S, Avdeev M, Chen L Q 2015 Nat. Commun. 6 6954Google Scholar

    [16]

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y S, Maier J, Yu Y 2018 Mater. Today 21 960Google Scholar

    [17]

    Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q 2014 Chin. Phys. B 23 118202Google Scholar

    [18]

    Li Y, Yang Z, Xu S, Mu L, Gu L, Hu Y S, Li H, Chen L 2015 Adv. Sci. 2 1500031Google Scholar

    [19]

    Delmas C, Fouassier C, Hagenmuller P 1980 Physica B & C 99 81

    [20]

    穆林沁, 戚兴国, 胡勇胜, 李泓, 陈立泉, 黄学杰. 2016 储能科学与技术 5 324

    Mu L Q, Qi X G, Hu Y S, Li H, Chen L Q, Huang X J 2016 Energy Storage Sci. Technol. 5 324

    [21]

    Su D, Wang C, Ahn H J, Wang G 2013 Chem. Eur. J. 19 10884Google Scholar

    [22]

    Caballero A, Hernan L, Morales J, Sanchez L, Pena J S, Aranda M A G 2002 J. Mater. Chem. 12 1142Google Scholar

    [23]

    Rai A K, Anh L T, Gim J, Mathew V, Kim J 2014 Ceram. Int. 40 2411Google Scholar

    [24]

    Xia X, Dahn J R 2012 J. Electrochem. Soc. 159 A1048Google Scholar

    [25]

    Yang L, Sun S, Du K, Zhao H, Yan D, Yang H Y, Bai Y 2021 Ceram. Int. 47 28521Google Scholar

    [26]

    Huang J Y, Yu T Y, Sun Y K 2018 J. Mater. Chem. A 6 16854Google Scholar

    [27]

    Hong N, Wu K, Peng Z, Zhu Z, Jia G, Wang M 2020 J. Phys. Chem. C 124 22925Google Scholar

    [28]

    Pang W L, Zhang X H, Guo J Z, Li J Y, Yan X, Hou B H, Wu X L 2017 J. Power Sources 356 80Google Scholar

    [29]

    Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Johnson C S 2014 Adv. Energy Mater. 4 1400458Google Scholar

    [30]

    Zheng S, Zhong G, McDonald M J, Gong Z, Liu R, Wen W, Yang Y 2016 J. Mater. Chem. A 4 9054Google Scholar

    [31]

    Natasha A C, Ma M, Xiao J, et al. 2006 MRS Online Proceedings Library 972 1

    [32]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 ACS Appl. Mater. Interfaces 7 8585Google Scholar

    [33]

    Yabuuchi N, Yano M, Yoshida H, Kuze S, Komaba S 2013 J. Electrochem. Soc. 160 A3131Google Scholar

    [34]

    Zhao H, Li J, Liu W, Xu H, Gao X, Shi J, Ding X 2021 Electrochim. Acta 388 138561Google Scholar

    [35]

    Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 J. Mater. Chem. A 9 12830Google Scholar

    [36]

    Zhang X, Zhou Y N, Yu L, Zhang S Y, Xing X X, Wang W, Xu S 2021 Mater. Chem. Front. 5 5344Google Scholar

    [37]

    Yao H R, Wang P F, Gong Y, Zhang J, Yu X, Gu L, Wan L J 2017 J. Am. Chem. Soc. 139 8440Google Scholar

    [38]

    Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F 2019 Adv. Energy Mater. 9 1901785Google Scholar

    [39]

    Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, Hu Y S 2020 Science 370 708

    [40]

    Dang R, Li N, Yang Y, Wu K, Li Q, Lee Y L, Liu X F, Hu Z B, Xiao X 2020 J. Power Sources 464 228190Google Scholar

    [41]

    彭佳悦, 祖晨曦, 李泓 2013 储能科学与技术 2 55Google Scholar

    Peng J Y, Zu C X, Li H 2013 Energy Storage Sci. Technol. 2 55Google Scholar

  • 图 1  样品NCMT (a)和NCMT-Mg (b)粉末材料的XRD衍射谱图. 样品NCMT (c)和NCMT-Mg (d)的SEM图以及对应于方框中颗粒表面不同元素的EDS分布图

    Fig. 1.  XRD diffraction patterns of NCMT (a) and NCMT-Mg powder (b). SEM images of NCMT (c) and NCMT-Mg (d) particles, with EDS images of different elements with particles marked with squares.

    图 2  (a)—(d) 材料NCMT各元素轨道(Mn 3s, C 1s, Mn 2p, Ni 2p)的XPS测试结果图; (e)—(i) 材料NCMT-Mg各元素轨道(Mn 3s, C 1s, Mn 2p, Ni 2p, Mg 1s)的XPS测试结果图

    Fig. 2.  The XPS spectra of (a)–(d) Mn 3s, C 1s, Mn 2p and Ni 2p of NCMT, and (e)–(i) Mn 3s, C 1s, Mn 2p, Ni 2p, Mg 1s of NCMT-Mg.

    图 3  NCMT和NCMT-Mg两种正极材料的电化学性能. 使用不同正极组装的电池NCMT (a)和NCMT-Mg (b) 的第1周, 和第10周、第50周、第100周和第350周充放电曲线((c), (d)); 在0.1 C电流倍率下两材料的循环性能((e), (f))

    Fig. 3.  Electrochemical performance of NCMT and NCMT-Mg based batteries. The batteries are assembled using different samples NCMT (a) and NCMT-Mg (b) initial charge and discharge curves. The batteries are assembled using different samples (c) NCMT and (d) NCMT-Mg charge and discharge curves for the, 10 th, 50 th, 100 th, and 350 th cycles. Cycling performance of the (e) NCMT and (f) NCMT-Mg at 0.1 C.

    图 4  使用NCMT (a), NCMT-Mg (b) 组装的电池在2.4—4.3 V范围内前两周循环dQ/dV曲线; 使用NCMT (c), NCMT-Mg (d) 组装的电池充电至4.3 V的非原位XRD衍射图谱

    Fig. 4.  dQ/dV curves of the first two cycles between 2.4 and 4.3 V of batteries assembled using different samples NCMT (a) and NCMT-Mg (b). Ex-XRD curves of the first to fifth cycles charge to 4.3 V of NCMT (c) and NCMT-Mg (d).

    图 5  两正极材料的倍率性能NCMT (a), NCMT-Mg (b); 使用不同样品NCMT (c), NCMT-Mg (d)组装的电池的第一周、第二周、第五周、第十周循环后的EIS结果

    Fig. 5.  Rate capability of the NCMT (a) and NCMT-Mg (b) at various current densities. EIS results after the first, second, fifth, and tenth cycles of NCMT (c) and NCMT-Mg (d).

  • [1]

    陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜 2018 物理学报 67 120601Google Scholar

    Lu Y X, Zhao C L, Rong X H, Chen L Q, Hu Y S 2018 Acta Phys. Sin. 67 120601Google Scholar

    [2]

    Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Yong-Sheng H, Chen L 2017 Energy Storage Mater 7 130Google Scholar

    [3]

    Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F 2017 ACS Appl. Mater. Interfaces 9 27936Google Scholar

    [4]

    Braconnier J, Delmas C, Fouassier C, Hagenmuller P 1980 Mater. Res. Bull. 15 1797Google Scholar

    [5]

    Nagelberg A, Worrell W 1979 J. Solid State Chem. 29 345Google Scholar

    [6]

    Whittingham M 1978 Prog Solid State Chem. 12 41Google Scholar

    [7]

    Whittingham M S 1976 Science 192 1126Google Scholar

    [8]

    Sun Y, Guo S, Zhou H 2019 Energy Environ. Sci. 12 825Google Scholar

    [9]

    Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S 2018 Adv. Energy Mater. 8 1703415Google Scholar

    [10]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S L, Dou S X 2019 Small 15 1805381Google Scholar

    [11]

    Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y 2018 Adv. Energy Mater. 8 1702869Google Scholar

    [12]

    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B 2013 Angew. Chem. Int. Ed. 52 1964Google Scholar

    [13]

    Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J. 2014 Angew. Chem. Int. Ed. 53 5892Google Scholar

    [14]

    Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S, Chen L 2017 Small 13 1701835Google Scholar

    [15]

    Wang Y S, Xiao R J, Hu Y S, Avdeev M, Chen L Q 2015 Nat. Commun. 6 6954Google Scholar

    [16]

    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu Y S, Maier J, Yu Y 2018 Mater. Today 21 960Google Scholar

    [17]

    Xu S Y, Wu X Y, Li Y M, Hu Y S, Chen L Q 2014 Chin. Phys. B 23 118202Google Scholar

    [18]

    Li Y, Yang Z, Xu S, Mu L, Gu L, Hu Y S, Li H, Chen L 2015 Adv. Sci. 2 1500031Google Scholar

    [19]

    Delmas C, Fouassier C, Hagenmuller P 1980 Physica B & C 99 81

    [20]

    穆林沁, 戚兴国, 胡勇胜, 李泓, 陈立泉, 黄学杰. 2016 储能科学与技术 5 324

    Mu L Q, Qi X G, Hu Y S, Li H, Chen L Q, Huang X J 2016 Energy Storage Sci. Technol. 5 324

    [21]

    Su D, Wang C, Ahn H J, Wang G 2013 Chem. Eur. J. 19 10884Google Scholar

    [22]

    Caballero A, Hernan L, Morales J, Sanchez L, Pena J S, Aranda M A G 2002 J. Mater. Chem. 12 1142Google Scholar

    [23]

    Rai A K, Anh L T, Gim J, Mathew V, Kim J 2014 Ceram. Int. 40 2411Google Scholar

    [24]

    Xia X, Dahn J R 2012 J. Electrochem. Soc. 159 A1048Google Scholar

    [25]

    Yang L, Sun S, Du K, Zhao H, Yan D, Yang H Y, Bai Y 2021 Ceram. Int. 47 28521Google Scholar

    [26]

    Huang J Y, Yu T Y, Sun Y K 2018 J. Mater. Chem. A 6 16854Google Scholar

    [27]

    Hong N, Wu K, Peng Z, Zhu Z, Jia G, Wang M 2020 J. Phys. Chem. C 124 22925Google Scholar

    [28]

    Pang W L, Zhang X H, Guo J Z, Li J Y, Yan X, Hou B H, Wu X L 2017 J. Power Sources 356 80Google Scholar

    [29]

    Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Johnson C S 2014 Adv. Energy Mater. 4 1400458Google Scholar

    [30]

    Zheng S, Zhong G, McDonald M J, Gong Z, Liu R, Wen W, Yang Y 2016 J. Mater. Chem. A 4 9054Google Scholar

    [31]

    Natasha A C, Ma M, Xiao J, et al. 2006 MRS Online Proceedings Library 972 1

    [32]

    Yuan D D, Wang Y X, Cao Y L, Ai X P, Yang H X 2015 ACS Appl. Mater. Interfaces 7 8585Google Scholar

    [33]

    Yabuuchi N, Yano M, Yoshida H, Kuze S, Komaba S 2013 J. Electrochem. Soc. 160 A3131Google Scholar

    [34]

    Zhao H, Li J, Liu W, Xu H, Gao X, Shi J, Ding X 2021 Electrochim. Acta 388 138561Google Scholar

    [35]

    Kubota K, Fujitani N, Yoda Y, Kuroki K, Tokita Y, Komaba S 2021 J. Mater. Chem. A 9 12830Google Scholar

    [36]

    Zhang X, Zhou Y N, Yu L, Zhang S Y, Xing X X, Wang W, Xu S 2021 Mater. Chem. Front. 5 5344Google Scholar

    [37]

    Yao H R, Wang P F, Gong Y, Zhang J, Yu X, Gu L, Wan L J 2017 J. Am. Chem. Soc. 139 8440Google Scholar

    [38]

    Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F 2019 Adv. Energy Mater. 9 1901785Google Scholar

    [39]

    Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, Hu Y S 2020 Science 370 708

    [40]

    Dang R, Li N, Yang Y, Wu K, Li Q, Lee Y L, Liu X F, Hu Z B, Xiao X 2020 J. Power Sources 464 228190Google Scholar

    [41]

    彭佳悦, 祖晨曦, 李泓 2013 储能科学与技术 2 55Google Scholar

    Peng J Y, Zu C X, Li H 2013 Energy Storage Sci. Technol. 2 55Google Scholar

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 冉沛林, 吴康, 赵恩岳, 王芳卫, 毋志民. 通过Mo掺杂诱导低Li/Ni混排程度增强Li1.2Ni0.13Fe0.13Mn0.54O2可逆容量与循环稳定性. 物理学报, 2024, 73(2): 028201. doi: 10.7498/aps.73.20231361
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, 2022, 71(1): 018201. doi: 10.7498/aps.71.20211100
    [5] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究. 物理学报, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [6] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响. 物理学报, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [7] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211100
    [8] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [9] 敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋. 一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜. 物理学报, 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [10] 王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武. 类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能. 物理学报, 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [11] 林传金, 郑锋, 朱梓忠. 锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散. 物理学报, 2019, 68(15): 157201. doi: 10.7498/aps.68.20190213
    [12] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [13] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [14] 冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文. 高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究. 物理学报, 2017, 66(24): 248202. doi: 10.7498/aps.66.248202
    [15] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [16] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [19] 胡国进, 欧阳楚英. 表面效应对锂离子电池正极材料LiMn2O4性能的影响. 物理学报, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
    [20] 何济洲, 王 磊, 李俊彬. 量子简并性对气体斯特林制冷循环性能的影响. 物理学报, 2005, 54(1): 24-29. doi: 10.7498/aps.54.24
计量
  • 文章访问数:  7682
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2022-11-28
  • 上网日期:  2022-12-21
  • 刊出日期:  2023-03-05

/

返回文章
返回