搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过Mo掺杂诱导低Li/Ni混排程度增强Li1.2Ni0.13Fe0.13Mn0.54O2可逆容量与循环稳定性

冉沛林 吴康 赵恩岳 王芳卫 毋志民

引用本文:
Citation:

通过Mo掺杂诱导低Li/Ni混排程度增强Li1.2Ni0.13Fe0.13Mn0.54O2可逆容量与循环稳定性

冉沛林, 吴康, 赵恩岳, 王芳卫, 毋志民

Enhancing reversible capacity and cycling stability of Li1.2Ni0.13Fe0.13Mn0.54O2 by inducing low Li/Ni misalignment through Mo doping

Ran Pei-Lin, Wu Kang, Zhao En-Yue, Wang Fang-Wei, Wu Zhi-Min
PDF
HTML
导出引用
  • 富锂层状氧化物因能量密度高和成本低, 有望成为下一代锂离子电池正极的重要候选材料. 然而, 富锂正极材料中阴离子氧化还原反应使晶格氧不稳定, 导致电压衰减和不可逆容量损失. 尽管铁代无钴富锂材料可以实现较少的电压衰减, 但存在严重的阳离子混排和较差的动力学. 采用一种简单易行的高价离子掺杂策略, 在Li1.2Ni0.13Fe0.13Mn0.54O2 (LNFMO)中掺入Mo元素, 拓宽了锂层间距, 为Li+的传输提供了更宽的通道, 改善了Li+的扩散动力学, 有效抑制了阳离子混排, 进一步稳定了层状结构. 得益于此, Mo掺杂后的富锂材料表现出显著增强的电化学性能, 在0.2 C电流密度下表现出209.48 mAh/g的初始放电比容量. 1 C下的初始放电比容量从137.02 mAh/g提高到165.15 mAh/g; 循环300次后, 仍有117.49 mAh/g的放电比容量, 电压衰减由2.09 mV/cycle降低为1.66 mV/cycle. 本文对Mo掺杂后的正极材料进行了系统表征并揭示了循环稳定的机理, 为高性能富锂正极材料的设计提供了重要参考.
    Li-ion batteries (LIBs) are widely used in mobile devices and electric vehicles, but the traditional layered transition metal cathode material, LiTMO2 (TM=Ni, Co, Mn, or Al), has a low energy density that cannot satisfy the demand of commercial applications. The Li-rich Mn-based layered oxides (LRLOs) are a strong competitor to the traditional layered cathode materials for their specific capacity of more than 200 mAh/g. Due to the high energy density and low cost, Li-rich Mn-based layered oxides (LRLO) have been a promising candidate cathode for next-generation Li-ion batteries. The anionic redox reaction (ARR) in LRLO destabilizes the lattice oxygen, leading to voltage degradation and capacity loss. Although iron-substituted cobalt-free Li-rich materials can achieve less voltage decay, they suffer severe cation disorder and poor kinetics. Here, we develop a simple and feasible high-valent ion doping strategy by doping Mo into Li1.2Ni0.13Fe0.13Mn0.54O2(LNFMO), which expands the Li layer spacing and provides a broader channel for Li+ transport, thereby improving the diffusion kinetics of Li+, effectively suppressing the cation disorder, and further stabilizing the layered structure. As a result, the Mo-doped LRLO exhibits significantly enhanced electrochemical performance, with an initial reversible capacity of 209.48 mAh/g at 0.2 C, and the initial specific capacity increasing from 137.02 mAh/g to 165.15 mAh/g at 1 C. After 300 cycles, specific capacity remains 117.49 mAh/g for the Mo-doped cathode, and the voltage decay decreases from 2.09 mV/cycle to 1.66 mV/cycle. The Mo-doped LRLO is systematically characterized, and the mechanism of cycle stabilization is revealed, which provides an important reference for designing high performance Li-rich cathode.
      通信作者: 赵恩岳, eyzhao@sslab.org.cn ; 王芳卫, fwwang@iphy.ac.cn ; 毋志民, zmwu@cqnu.edu.cn
    • 基金项目: 重庆市教委科学技术研究计划重点项目(批准号: KJZD-K202300512)和国家自然科学基金(批准号: 52088101, 12105197)资助的课题.
      Corresponding author: Zhao En-Yue, eyzhao@sslab.org.cn ; Wang Fang-Wei, fwwang@iphy.ac.cn ; Wu Zhi-Min, zmwu@cqnu.edu.cn
    • Funds: Project supported by the Key Project of Scientific and Technological Research Program of Chongqing Municipal Education Commission of China (Grant No. KJZD-K202300512) and the National Natural Science Foundation of China (Grant Nos. 52088101, 12105197).
    [1]

    Chen Q, Pei Y, Chen H, Song Y, Zhen L, Xu C Y, Xiao P, Henkelman G 2020 Nat. Commun. 11 3411Google Scholar

    [2]

    He W, Zhang C, Wang M, Wei B, Zhu Y, Wu J, Liang C, Chen L, Wang P, Wei W 2022 Adv. Funct. Mater. 32 2200322Google Scholar

    [3]

    Seo D-H, Lee J, Urban A, Malik R, Kang S, Ceder G 2016 Nat. Chem. 8 692Google Scholar

    [4]

    Li X, Li X, Monluc L, et al. 2022 Adv. Energy Mater. 12 2200427Google Scholar

    [5]

    Jiao J, Zhang Z, Kuroiwa Y, Zhao E, Yin W, Wang B, Wang F, Zhao J, Zhang X, Xiao X 2023 Chem. Eng. J. 454 140327Google Scholar

    [6]

    Zhang K, Li B, Zuo Y, Song J, Shang H, Ning F, Xia D 2019 Electrochem. Energy Rev. 2 606Google Scholar

    [7]

    Eum D, Kim B, Kim S J, et al. 2020 Nat. Mater. 19 419Google Scholar

    [8]

    Liu W, Li J, Li W, Xu H, Zhang C, Qiu X 2020 Nat. Commun. 11 3629Google Scholar

    [9]

    Asl H Y, Manthiram A 2020 Science 369 140Google Scholar

    [10]

    Manthiram A, Knight J C, Myung S T, Oh S-M, Sun Y K 2016 Energy Mater. 6 1501010Google Scholar

    [11]

    Wu K, Zhao E, Ran P, Yin W, Zhang Z, Wang B, Ikeda K, Otomo T, Xiao X, Wang F, Zhao J 2023 Small 19 2300419Google Scholar

    [12]

    Hu S, Pillai Anoop S, Liang G, Pang W K, Wang H, Li Q, Guo Z 2019 Electrochem. Energy Rev. 2 277Google Scholar

    [13]

    Zhao H, Lam W A, Sheng L, Wang L, Bai P, Yang Y, Ren D, Xu H, He X 2022 Adv. Energy Mater. 12 2103894Google Scholar

    [14]

    Zhao E, Zhang M, Wang X, et al. 2020 Energy Storage Mater. 24 384Google Scholar

    [15]

    Zhao H, Li W, Li J, Xu H, Zhang C, Li J, Han C, Li Z, Chu M, Qiu X 2022 Nano Energy 92 106760Google Scholar

    [16]

    Billaud J, Sheptyakov D, Sallard S, Leanza D, Talianker M, Grinblat J, Sclar H, Aurbach D, Novák P, Villevieille C 2019 J. Mater. Chem. A 7 15215Google Scholar

    [17]

    Zhao T, Ji R, Yang H, Zhang Y, Sun X, Li Y, Li L, Chen R 2019 J. Energy Chem. 33 37Google Scholar

    [18]

    Lee Y, Park H, Cho M, Ahn J, Ko W, Kang J, Choi Y J, Kim H, Park I, Ryu W, Hong J, Kim J 2022 Adv. Funct. Mater. 32 2204354Google Scholar

    [19]

    Nayak P K, Grinblat J, Levi M, Levi E, Kim S, Choi J W, Aurbach D 2016 Adv. Energy Mater. 6 1502398Google Scholar

    [20]

    Dahiya P P, Ghanty C, Sahoo K, Basu S, Majumder S B 2018 J. Electrochem. Soc. 165 A3114Google Scholar

    [21]

    Wang E, Xiao D, Wu T, Liu X, Zhou Y, Wang B, Lin T, Zhang X, Yu H 2022 Adv. Funct. Mater. 32 2201744Google Scholar

    [22]

    Kroger F A 1977 Annu. Rev. Mater. Sci. 7 449Google Scholar

    [23]

    Zu C X, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [24]

    Li X, Xin H, Liu Y, Li D, Yuan X, Qin X 2015 RSC Adv. 5 45351Google Scholar

    [25]

    Liu X, Yu B, Wang M, Jin Y, Fu Z, Chen J, Ma Z, Guo B, Huang Y, Li X 2022 Mater. Today Commun. 32 104170Google Scholar

    [26]

    Yang J, Chen Y, Li Y, Xi X, Zheng J, Zhu Y, Xiong Y, Liu S 2021 ACS Appl. Mater. Interfaces 13 25981Google Scholar

    [27]

    Meng J, Xu L, Ma Q, Yang M, Fang Y, Wan G, Li R, Yuan J, Zhang X, Yu H, Liu L, Liu T 2022 Adv. Funct. Mater. 32 2113013Google Scholar

    [28]

    Morales J, Pérez-Vicente C, Tirado J L 1990 Mater. Res. Bull. 25 623Google Scholar

    [29]

    Zhao J, Zhang W, Huq A, Misture S T, Zhang B, Guo S, Wu L, Zhu Y, Chen Z, Amine K, Pan F, Bai J, Wang F 2017 Adv. Energy Mater. 7 1601266Google Scholar

    [30]

    Li Q, Wang Y, Wang X, Sun X, Zhang J N, Yu X, Li H 2020 ACS Appl. Mater. Interfaces 12 2319Google Scholar

  • 图 1  Rietveld精修的样品LNFMO (a)和LNFMO-Mo (d) XRD图谱; 样品LNFMO (b)和LNFMO-Mo (e)的SEM图; 样品LNFMO (c)和LNFMO-Mo (f)的TEM图及层间距; LNFMO-Mo (g)表面不同元素的EDS分布图

    Fig. 1.  Rietveld refined XRD patterns of samples LNFMO (a) and LNFMO-Mo (d); SEM images of samples LNFMO (b) and LNFMO-Mo (e); TEM images and layer spacing of samples LNFMO (c) and LNFMO-Mo (f); EDS images of distributions of different elements on the surface of LNFMO-Mo (g).

    图 2  样品LNFMO (a)和LNFMO-Mo (b)前3次循环的CV曲线; 在不同电流密度下的倍率性能 (c); 0.2 C电流密度下的初始循环曲线 (d); LNFMO (e)和LNFMO-Mo (f)的GITT曲线; 两种样品0.2 C (g)、0.5 C (h)、1 C (i)电流密度下的长循环性能

    Fig. 2.  CV curves for the first 3 cycles of samples LNFMO (a) and LNFMO-Mo (b); rate performance at different current density (c); initial cycling curves at 0.2 C current density (d); GITT curves of samples LNFMO (e) and LNFMO-Mo (f); the long-cycle performance of the two samples at 0.2 C (g), 0.5 C (h), and 1 C (i) current density.

    图 3  LNFMO (a)和LNFMO-Mo (b)在原始、第1次充电至4.5 V、 4.8 V, 第1次放电至2.0 V状态下的XRD谱图及I(003)/(104)比值的变化; LNFMO(c)和LNFMO-Mo(d)在原始、第1次充电至4.8 V, 第1次放电至2.0 V状态下的O 1s XPS光谱

    Fig. 3.  XRD spectra of LNFMO (a) and LNFMO-Mo (b) in the pristine, first charge to 4.5 V, 4.8 V, and first discharge to 2.0 V states and the variation of the I(003)/(104) ratio; O 1s XPS spectra of LNFMO (c) and LNFMO-Mo (d) in the pristine, first charge to 4.8 V, and first discharge to 2.0 V states.

  • [1]

    Chen Q, Pei Y, Chen H, Song Y, Zhen L, Xu C Y, Xiao P, Henkelman G 2020 Nat. Commun. 11 3411Google Scholar

    [2]

    He W, Zhang C, Wang M, Wei B, Zhu Y, Wu J, Liang C, Chen L, Wang P, Wei W 2022 Adv. Funct. Mater. 32 2200322Google Scholar

    [3]

    Seo D-H, Lee J, Urban A, Malik R, Kang S, Ceder G 2016 Nat. Chem. 8 692Google Scholar

    [4]

    Li X, Li X, Monluc L, et al. 2022 Adv. Energy Mater. 12 2200427Google Scholar

    [5]

    Jiao J, Zhang Z, Kuroiwa Y, Zhao E, Yin W, Wang B, Wang F, Zhao J, Zhang X, Xiao X 2023 Chem. Eng. J. 454 140327Google Scholar

    [6]

    Zhang K, Li B, Zuo Y, Song J, Shang H, Ning F, Xia D 2019 Electrochem. Energy Rev. 2 606Google Scholar

    [7]

    Eum D, Kim B, Kim S J, et al. 2020 Nat. Mater. 19 419Google Scholar

    [8]

    Liu W, Li J, Li W, Xu H, Zhang C, Qiu X 2020 Nat. Commun. 11 3629Google Scholar

    [9]

    Asl H Y, Manthiram A 2020 Science 369 140Google Scholar

    [10]

    Manthiram A, Knight J C, Myung S T, Oh S-M, Sun Y K 2016 Energy Mater. 6 1501010Google Scholar

    [11]

    Wu K, Zhao E, Ran P, Yin W, Zhang Z, Wang B, Ikeda K, Otomo T, Xiao X, Wang F, Zhao J 2023 Small 19 2300419Google Scholar

    [12]

    Hu S, Pillai Anoop S, Liang G, Pang W K, Wang H, Li Q, Guo Z 2019 Electrochem. Energy Rev. 2 277Google Scholar

    [13]

    Zhao H, Lam W A, Sheng L, Wang L, Bai P, Yang Y, Ren D, Xu H, He X 2022 Adv. Energy Mater. 12 2103894Google Scholar

    [14]

    Zhao E, Zhang M, Wang X, et al. 2020 Energy Storage Mater. 24 384Google Scholar

    [15]

    Zhao H, Li W, Li J, Xu H, Zhang C, Li J, Han C, Li Z, Chu M, Qiu X 2022 Nano Energy 92 106760Google Scholar

    [16]

    Billaud J, Sheptyakov D, Sallard S, Leanza D, Talianker M, Grinblat J, Sclar H, Aurbach D, Novák P, Villevieille C 2019 J. Mater. Chem. A 7 15215Google Scholar

    [17]

    Zhao T, Ji R, Yang H, Zhang Y, Sun X, Li Y, Li L, Chen R 2019 J. Energy Chem. 33 37Google Scholar

    [18]

    Lee Y, Park H, Cho M, Ahn J, Ko W, Kang J, Choi Y J, Kim H, Park I, Ryu W, Hong J, Kim J 2022 Adv. Funct. Mater. 32 2204354Google Scholar

    [19]

    Nayak P K, Grinblat J, Levi M, Levi E, Kim S, Choi J W, Aurbach D 2016 Adv. Energy Mater. 6 1502398Google Scholar

    [20]

    Dahiya P P, Ghanty C, Sahoo K, Basu S, Majumder S B 2018 J. Electrochem. Soc. 165 A3114Google Scholar

    [21]

    Wang E, Xiao D, Wu T, Liu X, Zhou Y, Wang B, Lin T, Zhang X, Yu H 2022 Adv. Funct. Mater. 32 2201744Google Scholar

    [22]

    Kroger F A 1977 Annu. Rev. Mater. Sci. 7 449Google Scholar

    [23]

    Zu C X, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [24]

    Li X, Xin H, Liu Y, Li D, Yuan X, Qin X 2015 RSC Adv. 5 45351Google Scholar

    [25]

    Liu X, Yu B, Wang M, Jin Y, Fu Z, Chen J, Ma Z, Guo B, Huang Y, Li X 2022 Mater. Today Commun. 32 104170Google Scholar

    [26]

    Yang J, Chen Y, Li Y, Xi X, Zheng J, Zhu Y, Xiong Y, Liu S 2021 ACS Appl. Mater. Interfaces 13 25981Google Scholar

    [27]

    Meng J, Xu L, Ma Q, Yang M, Fang Y, Wan G, Li R, Yuan J, Zhang X, Yu H, Liu L, Liu T 2022 Adv. Funct. Mater. 32 2113013Google Scholar

    [28]

    Morales J, Pérez-Vicente C, Tirado J L 1990 Mater. Res. Bull. 25 623Google Scholar

    [29]

    Zhao J, Zhang W, Huq A, Misture S T, Zhang B, Guo S, Wu L, Zhu Y, Chen Z, Amine K, Pan F, Bai J, Wang F 2017 Adv. Energy Mater. 7 1601266Google Scholar

    [30]

    Li Q, Wang Y, Wang X, Sun X, Zhang J N, Yu X, Li H 2020 ACS Appl. Mater. Interfaces 12 2319Google Scholar

  • [1] 张妮妮, 任娟, 罗澜茜, 刘平平. Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究. 物理学报, 2024, 73(21): 217301. doi: 10.7498/aps.73.20240996
    [2] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究. 物理学报, 2024, 73(11): 113101. doi: 10.7498/aps.73.20231681
    [3] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能. 物理学报, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [4] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响. 物理学报, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [5] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [6] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [9] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [10] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [11] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [12] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [13] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] 刘相, 谢凯, 郑春满, 王军. 不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究. 物理学报, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  2688
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-09-25
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-20

/

返回文章
返回