搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究

刘相 谢凯 郑春满 王军

引用本文:
Citation:

不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究

刘相, 谢凯, 郑春满, 王军

Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres

Liu Xiang, Xie Kai, Zheng Chun-Man, Wang Jun
PDF
导出引用
  • 在惰性气氛Ar和还原性气氛H2中通过高温裂解含苯环的聚硅氧烷分别制备了硅氧碳化物Si-O-C复合负极材料,并且采用了元素分析element analysis、广角粉末X射线衍射XRD、傅里叶激光拉曼光谱Raman等手段表征了二者组成和结构的差别.实验发现,在H2气氛中裂解制备的Si-O-C复合负极含有较高的可逆、较低的不可逆容量,而且可逆容量随温度的增加而增长.其中H2气氛中1000 ℃情况下制备的Si-O-C复合负极的可逆容量622 mAh/g,首次库仑效率59%.Si-O-C复合负极的不可逆容量与氧的含量相关,可逆容量可能与碳含量及碳结构,以及SiOC中硅的结构相关.在H2气氛中制备的Si-O-C负极材料是一种潜在的锂离子电池的负极材料.
    Silicon Oxycarbide (Si-O-C) composite anode materials are prepared by pyrolysis of polysiloxane containing phenyl under argon and hydrogen atmospheres, separately. They are characterized by element analysis, wide-angle powder X-ray diffraction, Raman spectroscopy for comparison with each other. It is found that the silicon oxycarbide composite anode pyrolyzed under a hydrogen atmosphere demonstrates lower irreversible capacity and larger reversible capacity which increases with temperature rising. The one pyrolyzed at 1000 ℃ shows a reversible capacity of 622 mAh/g, and first coulombic efficiency of 59%.The magnitude of the irreversible capacity is correlated with the content of oxygen, and the reversible capacity is related to the content and structure of free carbon, and also the structure of Si-O-C. It is believed that Si-O-C composite materials pyrolyzed under a hydrogen atmosphere could be promising anode materials for lithium ion batteries.
    [1]

    Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 952(in Chinese)[侯柱锋、刘慧英、朱梓忠、黄美纯、杨 勇 2003 物理学报 52 952]

    [2]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 Acta Phys. Sin. 57 2375(in Chinese)[侯贤华、胡社军、李伟善、赵灵智、余洪文、谭春林 2008 物理学报 57 2375]

    [3]
    [4]
    [5]

    Lee H Y, Lee S M 2004 Electrochem. Commun. 6 465

    [6]

    Zhang X W, Patil P K, Wang C, Appleby A J, Little F 2004 J. Power Sources 125 206

    [7]
    [8]

    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y 2007 Nat.Nanotechnol. 3 31

    [9]
    [10]

    Kasavajjula U, Wang C, Appleby A J 2007 J. Power Sources 163 1003

    [11]
    [12]
    [13]

    Maranchi J P, Hepp A F, Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198

    [14]

    Lee K L, Jung J Y, Lee S W, Moon H S, Park J W 2004 J. Power Sources 129 270

    [15]
    [16]
    [17]

    Ohara S, Suzuki J, Sekine K, Takamura T 2004 J. Power Sources 136 303

    [18]
    [19]

    Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T 2005 J. Power Sources 146 441

    [20]

    Chen L, Wang K, Xie X, Xie J 2006 Electrochem. Solid-State Lett. 9 A512

    [21]
    [22]

    Chen L B, Yu H C, Xu C M, Wang T H 2009 Acta Phys. Sin. 58 5029 (in Chinese)[陈立宝、虞红春、许春梅、王太宏 2009 物理学报 58 5029]

    [23]
    [24]

    Dimov N, Kugino S, Yoshio M 2003 Electrochim. Acta 48 1579

    [25]
    [26]
    [27]

    Wen Z S, Yang J, Wang B F, Wang K, Liu Y 2003 Electrochem. Commun. 5 165

    [28]

    Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K 2004 Electrochem. Commun. 6 689

    [29]
    [30]
    [31]

    Wang G X, Yao J, Liu H K 2004 Electrochem. Solid-State Lett. 7 A250

    [32]

    Datta M K, Kumta P N 2006 J. Power Sources 158 557

    [33]
    [34]

    Xing W, Wilson A M, Zank G, Dahn J R 1997 Solid State Ionics 93 239

    [35]
    [36]
    [37]

    Wilson A M, Xing W, Zank G, Yates B, Dahn J R 1997 Solid State Ionics 100 259

    [38]
    [39]

    Wilson A M, Reimers J N, Fuller E W, Dahn J R 1994 Solid State Ionics 74 249

    [40]

    Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R 1997 J. Power Sources 68 195

    [41]
    [42]
    [43]

    Ning L, Wu Y, Wang L, Fang S, Holze R 2005 J. Solid State Electrochem. 9 520

    [44]

    Shen J, Ahn D, Raj R 2010 J. Power Sources 196 2875

    [45]
    [46]

    Ahn D, Raj R 2011 J. Power Sources 196 2179

    [47]
    [48]
    [49]

    Ahn D, Raj R 2010 J. Power Sources 195 3900

    [50]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2009 Chem. Lett. 38 86

    [51]
    [52]

    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M 2007 Carbon 45 477

    [53]
    [54]
    [55]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2010 ACS Appl. Mater. Interfaces 2 998

    [56]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [57]
    [58]

    Soraru G D, DAndrea G, Campostrini R, Babonneau F, Mariotto G 1995 J. Am. Ceram. Soc. 78 379

    [59]
    [60]
    [61]

    Wilson A M 1994 Ph. D. Dissertation (Ottawa:Simon Fraser University)

    [62]

    Wang S, Matsumura Y, Maeda T 1995 Synth. Met. 71 1759

    [63]
    [64]

    Buiel E, George A E, Dahn J R 1998 J. Electrochem. Soc. 145 2252

    [65]
  • [1]

    Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 952(in Chinese)[侯柱锋、刘慧英、朱梓忠、黄美纯、杨 勇 2003 物理学报 52 952]

    [2]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 Acta Phys. Sin. 57 2375(in Chinese)[侯贤华、胡社军、李伟善、赵灵智、余洪文、谭春林 2008 物理学报 57 2375]

    [3]
    [4]
    [5]

    Lee H Y, Lee S M 2004 Electrochem. Commun. 6 465

    [6]

    Zhang X W, Patil P K, Wang C, Appleby A J, Little F 2004 J. Power Sources 125 206

    [7]
    [8]

    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y 2007 Nat.Nanotechnol. 3 31

    [9]
    [10]

    Kasavajjula U, Wang C, Appleby A J 2007 J. Power Sources 163 1003

    [11]
    [12]
    [13]

    Maranchi J P, Hepp A F, Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198

    [14]

    Lee K L, Jung J Y, Lee S W, Moon H S, Park J W 2004 J. Power Sources 129 270

    [15]
    [16]
    [17]

    Ohara S, Suzuki J, Sekine K, Takamura T 2004 J. Power Sources 136 303

    [18]
    [19]

    Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T 2005 J. Power Sources 146 441

    [20]

    Chen L, Wang K, Xie X, Xie J 2006 Electrochem. Solid-State Lett. 9 A512

    [21]
    [22]

    Chen L B, Yu H C, Xu C M, Wang T H 2009 Acta Phys. Sin. 58 5029 (in Chinese)[陈立宝、虞红春、许春梅、王太宏 2009 物理学报 58 5029]

    [23]
    [24]

    Dimov N, Kugino S, Yoshio M 2003 Electrochim. Acta 48 1579

    [25]
    [26]
    [27]

    Wen Z S, Yang J, Wang B F, Wang K, Liu Y 2003 Electrochem. Commun. 5 165

    [28]

    Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K 2004 Electrochem. Commun. 6 689

    [29]
    [30]
    [31]

    Wang G X, Yao J, Liu H K 2004 Electrochem. Solid-State Lett. 7 A250

    [32]

    Datta M K, Kumta P N 2006 J. Power Sources 158 557

    [33]
    [34]

    Xing W, Wilson A M, Zank G, Dahn J R 1997 Solid State Ionics 93 239

    [35]
    [36]
    [37]

    Wilson A M, Xing W, Zank G, Yates B, Dahn J R 1997 Solid State Ionics 100 259

    [38]
    [39]

    Wilson A M, Reimers J N, Fuller E W, Dahn J R 1994 Solid State Ionics 74 249

    [40]

    Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R 1997 J. Power Sources 68 195

    [41]
    [42]
    [43]

    Ning L, Wu Y, Wang L, Fang S, Holze R 2005 J. Solid State Electrochem. 9 520

    [44]

    Shen J, Ahn D, Raj R 2010 J. Power Sources 196 2875

    [45]
    [46]

    Ahn D, Raj R 2011 J. Power Sources 196 2179

    [47]
    [48]
    [49]

    Ahn D, Raj R 2010 J. Power Sources 195 3900

    [50]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2009 Chem. Lett. 38 86

    [51]
    [52]

    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M 2007 Carbon 45 477

    [53]
    [54]
    [55]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2010 ACS Appl. Mater. Interfaces 2 998

    [56]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [57]
    [58]

    Soraru G D, DAndrea G, Campostrini R, Babonneau F, Mariotto G 1995 J. Am. Ceram. Soc. 78 379

    [59]
    [60]
    [61]

    Wilson A M 1994 Ph. D. Dissertation (Ottawa:Simon Fraser University)

    [62]

    Wang S, Matsumura Y, Maeda T 1995 Synth. Met. 71 1759

    [63]
    [64]

    Buiel E, George A E, Dahn J R 1998 J. Electrochem. Soc. 145 2252

    [65]
  • [1] 张妮妮, 任娟, 罗澜茜, 刘平平. Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究. 物理学报, 2024, 73(21): 217301. doi: 10.7498/aps.73.20240996
    [2] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究. 物理学报, 2024, 73(11): 113101. doi: 10.7498/aps.73.20231681
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [7] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [8] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [11] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [12] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [14] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [15] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [16] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [17] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究. 物理学报, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [18] 陈立宝, 虞红春, 许春梅, 王太宏. 离子束辅助沉积硅薄膜负极材料的研究. 物理学报, 2009, 58(7): 5029-5034. doi: 10.7498/aps.58.5029
    [19] 侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林. Li-Sn合金负极材料的嵌脱锂机理研究. 物理学报, 2008, 57(4): 2374-2379. doi: 10.7498/aps.57.2374
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  10603
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-07
  • 修回日期:  2011-02-13
  • 刊出日期:  2011-11-15

/

返回文章
返回