搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池

瞿子涵 赵洋 马飞 游经碧

引用本文:
Citation:

原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池

瞿子涵, 赵洋, 马飞, 游经碧

Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer

Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi
PDF
HTML
导出引用
  • 研制具有较大活性面积的钙钛矿太阳电池对领域面向产业化的发展具有重要意义. 当前, 大面积钙钛矿太阳电池的性能与小面积钙钛矿太阳电池之间仍存在较大差距. 本文提出一种在透明导电薄膜衬底上预先原子层沉积TiO2薄层的策略, 有效避免了衬底局部突起与钙钛矿吸光层直接接触导致的漏电现象, 提升了小面积器件制备工艺的重复一致性. 改善的电子输运和光管理过程也提高了小面积器件的效率. 更重要的是, 本文基于原子层沉积的TiO2开展了0.5 cm2大面积钙钛矿太阳电池的研究, 通过优化TiO2层的厚度, 研制出光电转换效率高达24.8%的冠军器件(第三方认证效率24.65%), 器件的制备工艺也表现出较好的重复性. 此外, 原子层沉积了TiO2缓冲层的电池器件在氮气氛围下存储1500 h后仍然能够保留初始性能的95%以上. 总之, 在粗糙衬底上预先原子层沉积TiO2薄层可以有效抑制局部漏电通道的产生, 有利于制备高性能的大面积钙钛矿太阳电池.
    Perovskite solar cells have been widely recognized as the most promising new-type photovoltaic device due to its power conversion efficiency rapidly increasing from 3.8% to over 26% in merely fifteen years. However, the high performances are achieved mainly on small area cells with an active area lower than 0.1 cm2. When enlarging the active area of perovskite solar cells, the efficiency falls dramatically. So, how to reduce the gap between performances of small area cells and large area cells gradually becomes a critical point in the path towards the commercialization of perovskite photovoltaic technology. Herein, a strategy of pre-growing thin layer of TiO2 on a rough FTO substrate by atomic layer deposition method before spin-coating SnO2 nanoparticles is proposed. Due to the inherent conformal film growth mode of atomic layer deposition, the FTO substrate can be completely covered by TiO2, thus preventing the direct contact between local protrusions of FTO and perovskite layer and impeding the current leakage phenomenon, which can be verified by the measurements from X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy, and further proved by the dark current measurement. By using this method, the repeatability and consistency of the small area cell fabrication technology on the same substrate are improved obviously. The improved electron transport process revealed by photoluminescence results and incident light management process revealed by external quantum efficiency results also brings about better solar cell performances. More importantly, highly efficient 0.5 cm2 large area perovskite solar cells are fabricated through optimization of TiO2 thickness. When growing 200 cycles TiO2 (~9 nm in thickness) by using atomic layer deposition technology, the champion large area perovskite solar cell possesses a power conversion efficiency as high as 24.8% (certified 24.65%). The device performances also show excellent repeatability between different fabrication batches. The perovskite solar cell with TiO2 buffer layer grown by the atomic layer deposition method can still retain over 95% of its initial efficiency after having been stored in a nitrogen atmosphere for 1500 h. The technique proposed in this paper can be helpful in manufacturing perovskite solar cell modules in the realistic photovoltaic market and can be extended to the large area fabrication of other perovskite optoelectronic devices such as light emitting diode, laser and detector.
      通信作者: 游经碧, jyou@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFB1506400)资助的课题.
      Corresponding author: You Jing-Bi, jyou@semi.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFB1506400).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [4]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [5]

    Zhao Y, Ma F, Qu Z H, Yu S Q, Shen T, Deng H X, Chu X B, Peng X X, Yuan Y B, Zhang X W, You J B 2022 Science 377 531Google Scholar

    [6]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [7]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html [2024-2-1]

    [8]

    Lin H, Yang M, Ru X N, et al. 2023 Nat. Energy 8 789Google Scholar

    [9]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [10]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [11]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [12]

    Cheng Y, Peng Y, Jen A K Y, Yip H L 2021 Sol. RRL 6 2100545Google Scholar

    [13]

    Kim G H, Kim D S 2021 Joule 5 1033Google Scholar

    [14]

    Plutnar J, Pumera M 2021 Small 17 2102088Google Scholar

    [15]

    Ahvenniemi E, Akbashev A R, Ali S, et al. 2017 J. Vac. Sci. Technol. A 35 010801Google Scholar

    [16]

    Cho Y J, Jeong M J, Park J H, Hu W, Lim J, Chang H S 2021 Energies 14 1156Google Scholar

    [17]

    Correa Baena J P, Steier L, Tress W, et al. 2015 Energy Environ. Sci. 8 2928Google Scholar

    [18]

    Li C, Xu H, Zhi C, Wan Z, Li Z 2022 Chin. Phys. B 31 111004Google Scholar

    [19]

    Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302Google Scholar

    [20]

    You Y, Tian W, Min L, Cao F, Deng K, Li L 2019 Adv. Mater. Interfaces 7 1901406Google Scholar

    [21]

    Jiang Q, Zhang L Q, Wang H L, et al. 2017 Nat. Energy 2 16177Google Scholar

    [22]

    Lin R X, Wang Y R, Lu Q W, et al. 2023 Nature 620 994Google Scholar

    [23]

    周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [24]

    Peng J, Walter D, Ren Y H, et al. 2021 Science 371 390Google Scholar

    [25]

    Chiappim W, Testoni G E, Moraes R S, et al. 2016 Vacuum 123 91Google Scholar

    [26]

    Sadollahkhani A, Liu P, Leandri V, Safdari M, Zhang W, Gardner J M 2017 Chemphyschem 18 3047Google Scholar

    [27]

    Chu S L, Zhang Y H, Xiao P, et al. 2022 Adv. Mater. 34 2108939Google Scholar

    [28]

    Zhao J J, Zhao L, Deng Y H, Xiao X, Ni Z Y, Xu S, Huang J S 2020 Nat. Photonics 14 612Google Scholar

  • 图 1  FTO衬底上有无ALD生长TiO2样品的XPS结果, 其中(a) 扫描全谱, (b) Ti的2p轨道, (c) Sn的3d轨道; 样品表面SEM结果, 其中 (d) FTO衬底, (e) FTO/TiO2, (f) FTO/TiO2/SnO2

    Fig. 1.  XPS results of FTO substrate with and without ALD grown TiO2: (a) Full spectrum; (b) Ti 2p orbit; (c) Sn 3d orbit. Surface SEM results: (d) FTO substrate; (e) FTO/TiO2; (f) FTO/TiO2/SnO2

    图 2  三种条件样品的(a)—(c)截面SEM结果和(d)—(f)表面AFM结果 (a), (d) FTO衬底; (b), (e) FTO/TiO2; (c), (f) FTO/TiO2/SnO2

    Fig. 2.  (a)–(c) Cross-section SEM results and (d)–(f) surface AFM results for (a), (d) FTO substrate; (b), (e) FTO/TiO2; (c), (f) FTO/TiO2/SnO2

    图 3  单独SnO2上和TiO2/SnO2上生长钙钛矿的光致发光测试结果 (a) 稳态荧光; (b) 时间分辨荧光

    Fig. 3.  Photoluminescence results for perovskite grown on SnO2 or TiO2/SnO2: (a) Steady state photoluminescence; (b) time-resolved photoluminescence.

    图 4  有无TiO2层的小面积钙钛矿太阳电池测试结果 (a) 快速单次J-V扫描曲线; (b) 慢速正向和反向扫描J-V曲线; (c) 外量子效率随波长变化和积分电流密度随波长累加曲线; (d) 暗态电流-电压曲线

    Fig. 4.  Measurement results of small area perovskite solar cells with or without TiO2 layer: (a) Single J-V sweep curve under fast scan mode; (b) reverse and forward J-V sweep curves under slow scan mode; (c) EQE and accumulated integrated current density versus wavelength curves; (d) current-voltage curves under dark environment.

    图 5  0.5 cm2大面积钙钛矿太阳电池测试结果 (a) 不同TiO2厚度电池性能对比; (b) 电池制备工艺重复性; (c) 冠军电池快速单次J-V扫描曲线(内插图为第三方认证结果); (d) 冠军电池慢速正向和反向扫描J-V曲线

    Fig. 5.  Measurement results for 0.5 cm2 large area perovskite solar cells: (a) Solar cell performances comparison of different TiO2 thicknesses; (b) repeatability of solar cell fabrication technology; (c) single J-V sweep curve under fast scan mode for champion cell (inset graph: certified result); (d) reverse and forward J-V sweep curves under slow scan mode for champion cell.

    图 6  有无TiO2层的钙钛矿太阳电池在氮气氛围中长期放置稳定性

    Fig. 6.  Long term storage stability under nitrogen atmosphere of perovskite solar cells with or without TiO2 layer.

    表 1  有无ALD生长的金属氧化物缓冲层制备的整块器件分割出的子电池效率

    Table 1.  Power conversion efficiency of the sub-cells from the whole device with or without ALD grown metal oxide buffer layer.

    电子传输层F1-PCE /%F2-PCE
    /%
    F3-PCE
    /%
    F4-PCE
    /%
    旋涂SnO225.4024.9525.768.72
    ALD SnO2/旋涂SnO224.2725.7425.1625.29
    ALD TiO2/旋涂SnO225.9226.4626.2125.92
    下载: 导出CSV

    表 2  有无ALD生长的TiO2整块器件上性能最佳子电池的各项参数

    Table 2.  Performance parameters of the best sub-cell on the whole device with or without ALD grown TiO2.

    电子传输层 VOC/V JSC/(mA·cm–2) FF/% PCE/% Reverse PCE, forward PCE/%
    SnO2 1.17 26.00 84.65 25.76 25.25/24.87
    TiO2/SnO2 1.18 26.30 85.19 26.46 25.99/25.81
    下载: 导出CSV

    表 3  不同TiO2生长循环数制备的大面积钙钛矿太阳电池性能参数

    Table 3.  Performance parameters of large area perovskite solar cells fabricated based on TiO2 grown by different cycles.

    TiO2生长循
    环数/cycle
    VOC/VJSC/(mA·cm–2)FF/%PCE/%
    01.1724.4474.3621.33
    1001.1725.3976.1122.65
    2001.1825.4579.8624.07
    4001.1725.3961.5718.23
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [4]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [5]

    Zhao Y, Ma F, Qu Z H, Yu S Q, Shen T, Deng H X, Chu X B, Peng X X, Yuan Y B, Zhang X W, You J B 2022 Science 377 531Google Scholar

    [6]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [7]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html [2024-2-1]

    [8]

    Lin H, Yang M, Ru X N, et al. 2023 Nat. Energy 8 789Google Scholar

    [9]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [10]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [11]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [12]

    Cheng Y, Peng Y, Jen A K Y, Yip H L 2021 Sol. RRL 6 2100545Google Scholar

    [13]

    Kim G H, Kim D S 2021 Joule 5 1033Google Scholar

    [14]

    Plutnar J, Pumera M 2021 Small 17 2102088Google Scholar

    [15]

    Ahvenniemi E, Akbashev A R, Ali S, et al. 2017 J. Vac. Sci. Technol. A 35 010801Google Scholar

    [16]

    Cho Y J, Jeong M J, Park J H, Hu W, Lim J, Chang H S 2021 Energies 14 1156Google Scholar

    [17]

    Correa Baena J P, Steier L, Tress W, et al. 2015 Energy Environ. Sci. 8 2928Google Scholar

    [18]

    Li C, Xu H, Zhi C, Wan Z, Li Z 2022 Chin. Phys. B 31 111004Google Scholar

    [19]

    Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302Google Scholar

    [20]

    You Y, Tian W, Min L, Cao F, Deng K, Li L 2019 Adv. Mater. Interfaces 7 1901406Google Scholar

    [21]

    Jiang Q, Zhang L Q, Wang H L, et al. 2017 Nat. Energy 2 16177Google Scholar

    [22]

    Lin R X, Wang Y R, Lu Q W, et al. 2023 Nature 620 994Google Scholar

    [23]

    周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [24]

    Peng J, Walter D, Ren Y H, et al. 2021 Science 371 390Google Scholar

    [25]

    Chiappim W, Testoni G E, Moraes R S, et al. 2016 Vacuum 123 91Google Scholar

    [26]

    Sadollahkhani A, Liu P, Leandri V, Safdari M, Zhang W, Gardner J M 2017 Chemphyschem 18 3047Google Scholar

    [27]

    Chu S L, Zhang Y H, Xiao P, et al. 2022 Adv. Mater. 34 2108939Google Scholar

    [28]

    Zhao J J, Zhao L, Deng Y H, Xiao X, Ni Z Y, Xu S, Huang J S 2020 Nat. Photonics 14 612Google Scholar

  • [1] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和. III族氮化物半导体及其合金的原子层沉积和应用. 物理学报, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [3] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [4] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [5] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [6] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [7] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [8] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [9] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [10] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [11] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [12] 李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生. 退火温度对电子束蒸发沉积Cu2O薄膜性能的影响. 物理学报, 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [13] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [14] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [15] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [17] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [18] 吴宝山, 王琳琳, 汪咏梅, 马廷丽. 基于半经验模型对大面积染料敏化太阳电池性能影响因素的研究. 物理学报, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [19] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [20] 欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程. 电流型大面积PIN探测器. 物理学报, 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
计量
  • 文章访问数:  868
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-03-15
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-05-05

/

返回文章
返回