-
CsPbI2Br薄膜在大气环境下制备存在覆盖率低、结晶质量差和结构稳定性差等问题. 本文提出了一种动态热风辅助再结晶策略(dynamic hot-air assisted recrystallization, DHR), 在相对湿度大于60% (>60% RH)的大气环境下, 制备出高覆盖率、(100)择优取向、大尺寸晶粒、结构稳定、光电性能好的CsPbI2Br薄膜. 这是由于动态热风过程能够有效提高薄膜的覆盖率和获得(100)择优取向的结晶, 但晶粒尺寸会显著减小(Rave = 0.32 μm)并伴随着大量的晶界形成, 从而加剧载流子的非辐射复合(τave = 99 ns); 而通过再结晶过程, 可进一步提高(100)择优取向的结晶和显著增大晶粒尺寸(Rave = 2.63 μm), 从而提高薄膜的光致发光强度和荧光寿命(τave = 118 ns). 由DHR策略制备的未封装CsPbI2Br太阳能电池具备高光电转换效率(power conversion efficiency, PCE = 17.55%)、低迟滞因子(hysteresis index, HI = 2.34%)和长期的储存稳定性(air, >60% RH, 40天, 初始PCE的96%)等特性.CsPbI2Br thin films prepared in ambient air are susceptible to humidity, resulting in low coverage, poor crystallization quality, numerous pinholes, and easy transformation into non perovskite phases. To overcome the troubles of pervoksite fabrication in ambient air, a feasible way is to reduce the moisture around the films as much as possible according to dynamic hot-air assisted strategy. However, the hot air accelerates the evaporation rate of solvent, resulting in the decrease of grain size. In order to improve the crystal growth and long-term stability in dynamic hot-air assisted strategy, in this work, we present a dynamic hot-air assisted recrystallization (DHR) strategy to prepare high-quality CsPbI2Br thin films in ambient air (i.e. the CsPbI2Br thin films prepared via dynamic hot-air strategy are recrystallized by using a green solvent (methylamine acetate) with high viscosity coefficient). Under ambient air with high humidity (RH>60%), the CsPbI2Br thin film with high coverage, (100) preferred orientation, large average grain size, and stable structure is prepared via DHR strategy. The dynamic hot-air process can effectively reduce the moisture around the film and increase the nucleation sites in the precursor solution, thereby improving the coverage of the film. However, this process inevitably results in the significant decrease of grain size (Rave= 0.32 μm) (i.e. more grain boundaries), exacerbating non-radiative recombination of carriers associated with trap states at these boundaries. The high coverage increases the grain-to-grain contact area, facilitating complete recrystallization. Thus, the recrystallization process can significantly increase the grain size (Rave = 2.63 μm) and obtain a (100) preferred orientation (I(110)/I(200) = 0.006), resulting in high photoluminescence intensity and long fluorescence lifetime (118 ns). The unencapsulated CsPbI2Br perovskite solar cell (PSC) optimized via DHR strategy with low hysterescence factor (2.34%) and high repeatability exhibits a high power conversion efficiency (PCE = 17.55%), which is higher than those of most CsPbI2Br PSCs prepared in ambient air and gloveboxes previously reported. Moreover, the unencapsulated CsPbI2Br PSC possesses an excellent storage stability under ambient air with high humidity (RH > 60%), remaining 96% of the original PCE after aging 40 days. This provides a promising approach for achieving high-performance and long-term stable CsPbI2Br films under ambient air with high humidity, which is expected to promote the commercialization process of perovskite/silicon tandem cells and semi-transparent devices.
-
Keywords:
- CsPbI2Br /
- dynamic hot-air assisted recrystallization /
- ambient air /
- photoelectric performance
[1] Zhang H, Pfeifer L, Zakeeruddin S M, Chu J H, Grätzel M 2023 Nat. Rev. Chem. 7 632Google Scholar
[2] Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar
[3] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar
[4] Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar
[5] Xu D F, Wang J A, Duan Y W, Yang S M, Zou H, Yang L, Zhang N, Zhou H, Lei X R, Wu M Z, Liu S Z, Liu Z K 2023 Adv. Funct. Mater. 33 2304237Google Scholar
[6] Wang J A, Che Y H, Duan Y W, Liu Z K, Yang S M, Xu D F, Fang Z M, Lei X R, Li Y, Liu S Z 2023 Adv. Mater. 35 2210223Google Scholar
[7] Li Y R, Zhang Y, Zhu P D, Li J B, Wu J W, Zhang J Y, Zhou X Y, Jiang Z Y, Wang X Z, Xu B M 2023 Adv. Funct. Mater. 33 2309010Google Scholar
[8] Zeng Q S, Zhang X Y, Feng X L, Lu S Y, Chen Z L, Yong X, Redfern S A T, Wei H T, Wang H Y, Shen H Z, Zhang W, Zheng W T, Zhang H, Tse J S, Yang B 2018 Adv. Mater. 30 1705393Google Scholar
[9] Guo Y X, Yin X T, Liu J, Wen S, Wu Y T, Que W X 2019 Sol. RRL 3 1900135Google Scholar
[10] Long Y, Liu K, Zhang Y L, Li W Z 2021 Molecules 26 3398Google Scholar
[11] Sun S Q, Xu X W, Sun Q, Yao Q, Cai Y T, Li X Y, Xu Y L, He W, Zhu M, Lv X, Lin F C R, Jen A K Y, Shi T T, Yip H L, Fung M K, Xie Y M 2023 Adv. Energy Mater. 13 2204347Google Scholar
[12] Shan S Q, Xu C, Wu H T, Niu B F, Fu W F, Zuo L J, Chen H Z 2023 Adv. Energy Mater. 13 2203682Google Scholar
[13] Liu X Y, Lian H J, Zhou Z R, Zou C, Xie J, Zhang F, Yuan H Y, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933Google Scholar
[14] Wang Y, Mahmoudi T, Rho W Y, Hahn Y B 2019 Nano Energy 64 103964Google Scholar
[15] Cheng Y H, Xu X W, Xie Y M, Li H W, Qing J, Ma C Q, Lee C S, So F, Tsang S W 2017 Sol. RRL 1 1700097Google Scholar
[16] Gao H, Ban C X, Li F M, Yu T, Yang J, Zhu W D, Zhou X X, Fu G, Zou Z G 2015 ACS Appl. Mater. Interfaces 7 9110Google Scholar
[17] Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zhao H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar
[18] Mali S S, Patil J V, Hong C K 2019 Nano Lett. 19 6213Google Scholar
[19] Xiao H R, Zuo C T, Zhang L X, Zhang W H, Hao F, Yi C Y, Liu F Y, Jin H L, Ding L M 2023 Nano Energy 106 108061Google Scholar
[20] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[21] Yin G N, Zhao H, Jiang H, Yuan S H, Niu T Q, Zhao K, Liu Z K, Liu S Z 2018 Adv. Funct. Mater. 28 1803269Google Scholar
[22] Wang J X, Liu Y B, Xiao X D, Bi Z N, Lu Y, Sheng G Z, Cai X S, Zhu Y Q, Xu X Q, Xu G 2021 Sol. Energy 216 7Google Scholar
[23] Yu F Y, Han Q J, Wang L, Yang S Z, Cai X Y, Zhang C, Ma T L 2021 Sol. RRL 5 2100404Google Scholar
[24] Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Adv. Energy Mater. 6 1600814Google Scholar
[25] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 物理学报 65 188801Google Scholar
Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar
[26] Wang X J, Ran X Q, Liu X T, Gu H, Zuo S W, Hui W, Lu H, Sun B, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W 2020 Angew. Chem. Int. Edit. 59 13354Google Scholar
[27] Hong F, Li Y, Xiang W, Liu X, Jiang Z M, Ma Z Q, Xu F 2021 Chem. Lett. 50 1500Google Scholar
[28] Chao L F, Xia Y D, Li B X, Xing G C, Chen Y H, Huang W 2019 Chem 5 995Google Scholar
[29] Haque M A, Troughton J, Baran D 2020 Adv. Energy Mater. 10 1902762Google Scholar
[30] Xu F, Wang X, Li Y, Jiang B, Dong Z R, Yang Z C, Kang J X, Shu X, Jiang Z M, Hong F, Xu R, Ma Z Q, Chen T, Xu Z, Xu H T 2022 Adv. Opt. Mater. 10 2200930Google Scholar
[31] Xue Q F, Bai Y, Liu M Y, Xia R X, Hu Z C, Chen Z M, Jiang X F, Huang F, Yang S H, Matsuo Y, Yip H L, Cao Y 2017 Adv. Energy Mater. 7 1602333Google Scholar
[32] Gau D L, Galain I, Aguiar I, Marotti R E 2023 J. Lumines. 257 119765Google Scholar
[33] Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar
[34] Zhu Z K, Shang J T, Tang G Q, Wang Z, Cui X X, Jin J J, Zhou Y, Zhang X, Zhang D, Liu X W, Tai Q D 2023 Chem. Eng. J. 454 140163Google Scholar
[35] Wang A L, Wang J W, Niu X B, Zuo C T, Hao F, Ding L M 2022 InfoMat 4 e12263Google Scholar
[36] Guo Q, Dai Z, Dong C Q, Ding Y J, Jiang N Z, Wang Z B, Gao L, Duan C, Guo Q, Zhou E R 2023 Chem. Eng. J. 461 142025Google Scholar
[37] Jeong M J, Jeon S W, Kim S Y, Noh J H 2023 Adv. Energy Mater. 13 2300698Google Scholar
[38] Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635Google Scholar
[39] Patil J V, Mali S S, Sadale S B, Hong C K 2023 Inorg. Chem. Front. 10 3213Google Scholar
[40] Hu Y Q, Cai L J, Xu Z, Wang Z, Zhou Y F, Sun G P, Sun T M, Qi Y B, Zhang S F, Tang Y F 2023 Inorg. Chem. 62 5408Google Scholar
[41] Bahadur J, Ryu J, Pandey P, Cho S W, Cho J S, Kang D W 2023 Nanoscale 15 3850Google Scholar
-
图 2 CsPbI2Br单胞的(a)晶体结构和(b)能带结构; 对照组和优化组薄膜的(c)紫外-可见吸收光谱及PL光谱(实线表示玻璃基底上PVSK的PL光谱; 方块表示SnO2上PVSK的PL光谱)
Fig. 2. (a) Crystal structure and (b) band structure of CsPbI2Br unit cell; (c) UV-vis absorption spectra and PL spectra of the control group and optimized group thin films (the solid line represents the PL spectra of PVSK on glass; the square dots represent the PL spectra of PVSK on SnO2).
图 4 对照组和优化组钙钛矿太阳能电池的(a)光电流密度-电压曲线, (b)光电流密度-电压正反扫曲线, (c)外量子效率, (d)转换效率统计分布图, (e)短路电流统计分布图, (f)开路电压统计分布图, (g)填充因子统计分布图, (h)开路电压随光照强度变化, (i)电流-电压曲线, (j)储存稳定性
Fig. 4. The (a) J-V curves, (b) hysteresis curves, (c) EQE spectra, (d) PCE statistics, (e) JSC statistics, (f) VOC statistics, (g) FF statistics, (h) light intensity-dependent VOC variation, (i) current-voltage curves, and (j) storage stability of the control group and optimized group perovskite solar cells.
表 1 对照组与优化组CsPbI2Br薄膜TRPL光谱的拟合参数
Table 1. Fitting parameters of TRPL spectra for the control group and optimized group CsPbI2Br thin films.
Sample A1 τ1 /ns A2 τ2 /ns τave/ns Control 0.92 6.45 0.08 118 75 REC 0.91 7.35 0.09 160 112 DHA 0.71 2.77 0.29 105 99 DHR 0.69 9.36 0.31 135 118 表 2 采用动态热风辅助再结晶策略的CsPbI2Br太阳能电池与其他CsPbI2Br太阳能电池的性能比较
Table 2. Performance comparison of CsPbI2Br solar cells via dynamic hot-air assisted recrystallization strategy with other reports.
年份 制备环境 策略 效率/% 稳定性 文献 2022 N2 Doping 16.20 88.6%, 42 d (air, 30% RH) [35] 2023 N2 Interface engineering 17.33 88.7%, 42 d (air, 10% RH) [36] 2023 N2 Doping 17.70 97%, 42 d (air, 10% RH) [37] 2019 Air, 25%—35% RH DHA 14.85 90%, 17 d (air, 85 ℃) [18] 2020 Air, 30% RH Precursor engineering 16.14 93%, 35 d (air, 30% RH) [17] 2021 Air, 35% RH DHA+Doping 17.46 80%, 17 d (air, 30% RH) [38] 2023 Air, — DHA+Doping 16.74 90%, 17 d (air, 25% RH) [39] 2023 Air, 20% RH DHA+Doping 17.39 84%, 9 d (N2, 85 ℃) [19] 2023 Air, — Doping 17.38 90%, 42 d (air, 25% RH) [40] 2023 Air, — DHA+Doping 17.40 87.25%, 30 d (air, 14% RH) [41] 2024 Air, >60% RH DHR 17.55 96%, 40 d (air, >60% RH) This work -
[1] Zhang H, Pfeifer L, Zakeeruddin S M, Chu J H, Grätzel M 2023 Nat. Rev. Chem. 7 632Google Scholar
[2] Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar
[3] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar
[4] Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar
[5] Xu D F, Wang J A, Duan Y W, Yang S M, Zou H, Yang L, Zhang N, Zhou H, Lei X R, Wu M Z, Liu S Z, Liu Z K 2023 Adv. Funct. Mater. 33 2304237Google Scholar
[6] Wang J A, Che Y H, Duan Y W, Liu Z K, Yang S M, Xu D F, Fang Z M, Lei X R, Li Y, Liu S Z 2023 Adv. Mater. 35 2210223Google Scholar
[7] Li Y R, Zhang Y, Zhu P D, Li J B, Wu J W, Zhang J Y, Zhou X Y, Jiang Z Y, Wang X Z, Xu B M 2023 Adv. Funct. Mater. 33 2309010Google Scholar
[8] Zeng Q S, Zhang X Y, Feng X L, Lu S Y, Chen Z L, Yong X, Redfern S A T, Wei H T, Wang H Y, Shen H Z, Zhang W, Zheng W T, Zhang H, Tse J S, Yang B 2018 Adv. Mater. 30 1705393Google Scholar
[9] Guo Y X, Yin X T, Liu J, Wen S, Wu Y T, Que W X 2019 Sol. RRL 3 1900135Google Scholar
[10] Long Y, Liu K, Zhang Y L, Li W Z 2021 Molecules 26 3398Google Scholar
[11] Sun S Q, Xu X W, Sun Q, Yao Q, Cai Y T, Li X Y, Xu Y L, He W, Zhu M, Lv X, Lin F C R, Jen A K Y, Shi T T, Yip H L, Fung M K, Xie Y M 2023 Adv. Energy Mater. 13 2204347Google Scholar
[12] Shan S Q, Xu C, Wu H T, Niu B F, Fu W F, Zuo L J, Chen H Z 2023 Adv. Energy Mater. 13 2203682Google Scholar
[13] Liu X Y, Lian H J, Zhou Z R, Zou C, Xie J, Zhang F, Yuan H Y, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933Google Scholar
[14] Wang Y, Mahmoudi T, Rho W Y, Hahn Y B 2019 Nano Energy 64 103964Google Scholar
[15] Cheng Y H, Xu X W, Xie Y M, Li H W, Qing J, Ma C Q, Lee C S, So F, Tsang S W 2017 Sol. RRL 1 1700097Google Scholar
[16] Gao H, Ban C X, Li F M, Yu T, Yang J, Zhu W D, Zhou X X, Fu G, Zou Z G 2015 ACS Appl. Mater. Interfaces 7 9110Google Scholar
[17] Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zhao H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar
[18] Mali S S, Patil J V, Hong C K 2019 Nano Lett. 19 6213Google Scholar
[19] Xiao H R, Zuo C T, Zhang L X, Zhang W H, Hao F, Yi C Y, Liu F Y, Jin H L, Ding L M 2023 Nano Energy 106 108061Google Scholar
[20] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[21] Yin G N, Zhao H, Jiang H, Yuan S H, Niu T Q, Zhao K, Liu Z K, Liu S Z 2018 Adv. Funct. Mater. 28 1803269Google Scholar
[22] Wang J X, Liu Y B, Xiao X D, Bi Z N, Lu Y, Sheng G Z, Cai X S, Zhu Y Q, Xu X Q, Xu G 2021 Sol. Energy 216 7Google Scholar
[23] Yu F Y, Han Q J, Wang L, Yang S Z, Cai X Y, Zhang C, Ma T L 2021 Sol. RRL 5 2100404Google Scholar
[24] Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Adv. Energy Mater. 6 1600814Google Scholar
[25] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 物理学报 65 188801Google Scholar
Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar
[26] Wang X J, Ran X Q, Liu X T, Gu H, Zuo S W, Hui W, Lu H, Sun B, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W 2020 Angew. Chem. Int. Edit. 59 13354Google Scholar
[27] Hong F, Li Y, Xiang W, Liu X, Jiang Z M, Ma Z Q, Xu F 2021 Chem. Lett. 50 1500Google Scholar
[28] Chao L F, Xia Y D, Li B X, Xing G C, Chen Y H, Huang W 2019 Chem 5 995Google Scholar
[29] Haque M A, Troughton J, Baran D 2020 Adv. Energy Mater. 10 1902762Google Scholar
[30] Xu F, Wang X, Li Y, Jiang B, Dong Z R, Yang Z C, Kang J X, Shu X, Jiang Z M, Hong F, Xu R, Ma Z Q, Chen T, Xu Z, Xu H T 2022 Adv. Opt. Mater. 10 2200930Google Scholar
[31] Xue Q F, Bai Y, Liu M Y, Xia R X, Hu Z C, Chen Z M, Jiang X F, Huang F, Yang S H, Matsuo Y, Yip H L, Cao Y 2017 Adv. Energy Mater. 7 1602333Google Scholar
[32] Gau D L, Galain I, Aguiar I, Marotti R E 2023 J. Lumines. 257 119765Google Scholar
[33] Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar
[34] Zhu Z K, Shang J T, Tang G Q, Wang Z, Cui X X, Jin J J, Zhou Y, Zhang X, Zhang D, Liu X W, Tai Q D 2023 Chem. Eng. J. 454 140163Google Scholar
[35] Wang A L, Wang J W, Niu X B, Zuo C T, Hao F, Ding L M 2022 InfoMat 4 e12263Google Scholar
[36] Guo Q, Dai Z, Dong C Q, Ding Y J, Jiang N Z, Wang Z B, Gao L, Duan C, Guo Q, Zhou E R 2023 Chem. Eng. J. 461 142025Google Scholar
[37] Jeong M J, Jeon S W, Kim S Y, Noh J H 2023 Adv. Energy Mater. 13 2300698Google Scholar
[38] Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635Google Scholar
[39] Patil J V, Mali S S, Sadale S B, Hong C K 2023 Inorg. Chem. Front. 10 3213Google Scholar
[40] Hu Y Q, Cai L J, Xu Z, Wang Z, Zhou Y F, Sun G P, Sun T M, Qi Y B, Zhang S F, Tang Y F 2023 Inorg. Chem. 62 5408Google Scholar
[41] Bahadur J, Ryu J, Pandey P, Cho S W, Cho J S, Kang D W 2023 Nanoscale 15 3850Google Scholar
计量
- 文章访问数: 2426
- PDF下载量: 76
- 被引次数: 0