搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究

冯艳艳 黄宏斌 张心桔 易亚军 杨文

引用本文:
Citation:

高性能镍钴层状双金属氢氧化物的制备及其电化学性能研究

冯艳艳, 黄宏斌, 张心桔, 易亚军, 杨文

Synthesis and electrochemical properties of Ni-Co layered double hydroxides with high performance

Feng Yan-Yan, Huang Hong-Bin, Zhang Xin-Ju, Yi Ya-Jun, Yang Wen
PDF
导出引用
  • 分别选用四种不同阴离子的镍、钴金属盐作为镍源和钴源,通过简单的水热法合成镍钴双金属氢氧化物,并对双金属氢氧化物的形貌结构及其电化学性能进行表征分析,以研究镍源和钴源阴离子的种类对所得材料形貌结构及其电化学性能的影响.结果表明:不同的镍、钴金属盐不仅影响着双金属氢氧化物的形貌结构,而且对其电化学性能也有很大的影响,其中,以硫酸镍和硫酸钴合成的镍钴双金属氢氧化物具有片层形貌结构和优异的电化学性能,在电位窗口为0.45 V、电流密度为1 A/g时,其比电容值可达1551 F/g.
    Supercapacitor is a new-type energy storage device with the promising application prospect, and its development mainly relies on the development of electrode materials. In this work, a series of nickel-cobalt (Ni-Co) layered double hydroxides is synthesized via a simple hydrothermal method by using nickel and cobalt salts with four different anions (including sulfate, chlorate, acetate and nitrate) serving as nickel and cobalt sources. According to the types of salts, the obtained samples are named Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3), respectively. The morphology and structure of Ni-Co layered double hydroxide are characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively, and the electrochemical properties of the sample are investigated by CHI660D electrochemical workstation in 2 M KOH aqueous solution. The results demonstrate that the types of nickel and cobalt salts not only affect the morphology and structure of Ni-Co layered double hydroxide, but also significantly influence the electrochemical properties of the sample. The SEM images show that the Ni-Co layered double hydroxide synthesized with nickel sulfate and cobalt sulfate (Ni-Co(SO4)) possesses loose layer structure, which can provide abundant active sites and benefit the diffusion of electrolyte. The electrochemical test results show that the specific capacitances of Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3) under a current density of 1 A/g at a potential window of 0.45 V, are 1551.1 F/g, 440.7 F/g, 337.8 F/g and 141.6 F/g respectively. As the current density increases from 1 A/g to 7 A/g, the capacitive retention rates of Ni-Co(SO4), Ni-Co(Cl), Ni-Co(Ac) and Ni-Co(NO3) are kept at 60.1%, 21.7%, 4.6% and 6.0%, respectively. The results of alternating current (AC) impedance test display that the electron transfer resistance follows an increasing trend:R[Ni-Co(SO4)] R[Ni-Co(Cl)] R[Ni-Co(Ac)] R[Ni-Co(NO3)]. The small electron transfer resistance is conducive to excellent capacitance at the high current density. Therefore, the excellent capacitive performance of the sample Ni-Co(SO4) is ascribed to the loose layer structure and low electron transfer resistance. In addition, the cycling stabilities of the samples are investigated by constant current charge-discharge test. The capacitive value of the sample Ni-Co(SO4) declines by 16% for 1000 cycles at a current density of 7 A/g. The capacitance decrease can be ascribed to the damage to the layered structure and the increase of the electron transfer resistance in the multiple constant current charge-discharge processes as shown in the results of SEM and AC impedance before and after cycle. This study provides a foundation for exploiting and utilizing high-performance nickel-cobalt layered double hydroxides as electrode material of supercapacitor.
      通信作者: 杨文, yangwen167@163.com
    • 基金项目: 国家自然科学基金(批准号:21606058)、广西中青年教师基础能力提升项目(批准号:2017KY0268)、广西电磁化学功能物质重点实验室基金(批准号:EMFM20161204)和桂林理工大学博士科研启动基金(批准号:002401003512)资助的课题.
      Corresponding author: Yang Wen, yangwen167@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21606058), the Guangxi Basic Ability Promotion Program for Middle-aged and Young Teachers, China (Grant No. 2017KY0268), the Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, China (Grant No. EMFM20161204), and the Startup Foundation for Doctors of Guilin University of Technology, China (Grant No. 002401003512).
    [1]

    Qu D 2002 J. Power Sources 109 403

    [2]

    Xie L J, Sun G H, Xie L F, Su F Y, Li X M, Liu Z, Kong Q Q, L C X, Li K X, Chen C M 2016 New Carbon Mater. 31 37 (in Chinese) [谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛 2016 新型炭材料 31 37]

    [3]

    Rakhi R B, Chen W, Cha D, Alshareef H N 2011 J. Mater. Chem. 21 16197

    [4]

    Jiang J W, Zhang X G, Su L H, Zhang L H, Zhang F 2010 Inorg. Chem. 26 1623 (in Chinese) [蒋健伟, 张校刚, 苏凌浩, 章罗江, 张方 2010 无机化学学报 26 1623]

    [5]

    Guo Q P, Liu X H, Zhao J W, Qin L R 2017 J. Southwest China Norm. Univ. 42 96 (in Chinese) [郭秋萍, 刘晓会, 赵建伟, 秦丽溶 2017 西南师范大学学报 (自然科学版) 42 96]

    [6]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520

    [7]

    Yang W, Feng Y, Wang N, Yuan H, Xiao D 2015 J. Alloy. Compd. 644 836

    [8]

    Xi D, Chen X M 2013 J. Shanghai Norm. Univ. 42 260 (in Chinese) [奚栋, 陈心满 2013 上海师范大学学报(自然科学版) 42 260]

    [9]

    Yin Y, Liu C, Fan S 2012 J. Phys. Chem. C 116 26185

    [10]

    Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J 2014 J. Power Sources 272 915

    [11]

    Giri S, Das C K, Kalra S S 2012 J. Mater. Sci. Res. 1 10

    [12]

    Wu J Z, Lu D D, Zhang R, Zhu Y R, Yang S Y, Zhu R S, Yi T F 2016 Mod. Chem. Ind. 2 80 (in Chinese) [武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋 2016 现代化工 2 80]

    [13]

    He J, Wei M, Li B, Kang Y, Evans D G 2007 Interf. Sci. Technol. 38 345

    [14]

    Mavis B, Akinc M 2004 J. Power Sources 134 308

    [15]

    Cao G T, Xue J L, Xia S J, Ni Z M 2016 J. Chin. Ceram. Soc. 44 726 (in Chinese) [曹根庭, 薛继龙, 夏盛杰, 倪哲明 2016 硅酸盐学报 44 726]

    [16]

    Niu Y L, Jin X, Zheng J, Li Z J, Gu Z G, Yan T, Fang Y J 2012 Chin. J. Inorg. Chem. 28 1878

    [17]

    Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T 2006 J. Am. Chem. Soc. 128 4872

    [18]

    Gao X, L H, Li Z, Xu Q, Liu H, Wang Y, Xia Y 2016 RSC Adv. 6 107278

    [19]

    Yan L, Kong H, Li Z J 2013 Acta Chim. Sin. 71 822 (in Chinese) [严琳, 孔惠, 李在均 2013 化学学报 71 822]

    [20]

    Sun X, Wang G, Sun H, Lu F, Yu M, Lian J 2013 J. Power Sources 238 150

    [21]

    Koilraj P, Srinivasan K 2013 Ind. Eng. Chem. Res. 52 7373

    [22]

    Pang X, Ma Z Q, Zuo L 2009 Acta Phys.-Chim. Sin. 25 2433 (in Chinese) [庞旭, 马正青, 左列 2009 物理化学学报 25 2433]

  • [1]

    Qu D 2002 J. Power Sources 109 403

    [2]

    Xie L J, Sun G H, Xie L F, Su F Y, Li X M, Liu Z, Kong Q Q, L C X, Li K X, Chen C M 2016 New Carbon Mater. 31 37 (in Chinese) [谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛 2016 新型炭材料 31 37]

    [3]

    Rakhi R B, Chen W, Cha D, Alshareef H N 2011 J. Mater. Chem. 21 16197

    [4]

    Jiang J W, Zhang X G, Su L H, Zhang L H, Zhang F 2010 Inorg. Chem. 26 1623 (in Chinese) [蒋健伟, 张校刚, 苏凌浩, 章罗江, 张方 2010 无机化学学报 26 1623]

    [5]

    Guo Q P, Liu X H, Zhao J W, Qin L R 2017 J. Southwest China Norm. Univ. 42 96 (in Chinese) [郭秋萍, 刘晓会, 赵建伟, 秦丽溶 2017 西南师范大学学报 (自然科学版) 42 96]

    [6]

    Zhang L L, Zhao X S 2009 Chem. Soc. Rev. 38 2520

    [7]

    Yang W, Feng Y, Wang N, Yuan H, Xiao D 2015 J. Alloy. Compd. 644 836

    [8]

    Xi D, Chen X M 2013 J. Shanghai Norm. Univ. 42 260 (in Chinese) [奚栋, 陈心满 2013 上海师范大学学报(自然科学版) 42 260]

    [9]

    Yin Y, Liu C, Fan S 2012 J. Phys. Chem. C 116 26185

    [10]

    Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J 2014 J. Power Sources 272 915

    [11]

    Giri S, Das C K, Kalra S S 2012 J. Mater. Sci. Res. 1 10

    [12]

    Wu J Z, Lu D D, Zhang R, Zhu Y R, Yang S Y, Zhu R S, Yi T F 2016 Mod. Chem. Ind. 2 80 (in Chinese) [武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋 2016 现代化工 2 80]

    [13]

    He J, Wei M, Li B, Kang Y, Evans D G 2007 Interf. Sci. Technol. 38 345

    [14]

    Mavis B, Akinc M 2004 J. Power Sources 134 308

    [15]

    Cao G T, Xue J L, Xia S J, Ni Z M 2016 J. Chin. Ceram. Soc. 44 726 (in Chinese) [曹根庭, 薛继龙, 夏盛杰, 倪哲明 2016 硅酸盐学报 44 726]

    [16]

    Niu Y L, Jin X, Zheng J, Li Z J, Gu Z G, Yan T, Fang Y J 2012 Chin. J. Inorg. Chem. 28 1878

    [17]

    Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T 2006 J. Am. Chem. Soc. 128 4872

    [18]

    Gao X, L H, Li Z, Xu Q, Liu H, Wang Y, Xia Y 2016 RSC Adv. 6 107278

    [19]

    Yan L, Kong H, Li Z J 2013 Acta Chim. Sin. 71 822 (in Chinese) [严琳, 孔惠, 李在均 2013 化学学报 71 822]

    [20]

    Sun X, Wang G, Sun H, Lu F, Yu M, Lian J 2013 J. Power Sources 238 150

    [21]

    Koilraj P, Srinivasan K 2013 Ind. Eng. Chem. Res. 52 7373

    [22]

    Pang X, Ma Z Q, Zuo L 2009 Acta Phys.-Chim. Sin. 25 2433 (in Chinese) [庞旭, 马正青, 左列 2009 物理化学学报 25 2433]

  • [1] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [2] 薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅. 多孔ZnO微米球的制备及其优异的丙酮敏感特性. 物理学报, 2014, 63(17): 176803. doi: 10.7498/aps.63.176803
    [3] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [4] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究. 物理学报, 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [5] 陈先梅, 郜小勇, 张飒, 刘红涛. 醋酸锌热解温度对ZnO纳米棒的结构及光学性质的影响. 物理学报, 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [6] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 . 物理学报, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [7] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响. 物理学报, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [8] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究. 物理学报, 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [9] 李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩. 生长在Si基底上VOX纳米管形貌的时间影响因子及其气敏性初探. 物理学报, 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [10] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体. 物理学报, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [11] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响. 物理学报, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [12] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [13] 周传仓, 刘发民, 丁芃, 钟文武, 蔡鲁刚, 曾乐贵. 钪钇石型β-Mn2V2O7的水热合成、结构表征与反铁磁性. 物理学报, 2011, 60(7): 077504. doi: 10.7498/aps.60.077504
    [14] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究. 物理学报, 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [15] 黄金昭, 李世帅, 冯秀鹏. ZnO纳米棒的低温溶液法制备、光电特性研究及其在有机/无机复合电致发光中的应用. 物理学报, 2010, 59(8): 5839-5844. doi: 10.7498/aps.59.5839
    [16] 新梅, 曹望和. 水热法制备ZnS:Cu,Tm超细X射线发光粉. 物理学报, 2010, 59(8): 5833-5838. doi: 10.7498/aps.59.5833
    [17] 张爱平, 张进治. 水热法制备不同形貌和结构的BiVO4粉末. 物理学报, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
    [18] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [19] 刘红霞, 周圣明, 李抒智, 杭 寅, 徐 军, 顾书林, 张 荣. 柱状ZnO阵列薄膜的生长及其发光特性. 物理学报, 2006, 55(3): 1398-1401. doi: 10.7498/aps.55.1398
    [20] 黄晖, 罗宏杰, 姚熹. 水热法制备TiO2薄膜的研究. 物理学报, 2002, 51(8): 1881-1886. doi: 10.7498/aps.51.1881
计量
  • 文章访问数:  8239
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-25
  • 修回日期:  2017-09-08
  • 刊出日期:  2017-12-05

/

返回文章
返回