搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机扰动下Lorenz混沌系统的自适应同步与参数识别

祝大伟 涂俐兰

引用本文:
Citation:

随机扰动下Lorenz混沌系统的自适应同步与参数识别

祝大伟, 涂俐兰

Adaptive synchronization and parameter identification for Lorenz chaotic system with stochastic perturbations

Zhu Da-Wei, Tu Li-Lan
PDF
导出引用
  • 本论文研究了具有随机扰动和未知参数的Lorenz混沌系统, 其中随机扰动是一维标准Wiener随机过程. 基于随机李雅普洛夫稳定性理论、It (伊藤)公式以及自适应控制方法, 本文分别通过设置三个和两个控制器,从理论上提出了两个均方渐近自适应同步标准, 这些标准简单易行,不仅能使得随机扰动下的驱动系统和响应系统达到均方渐近同步, 而且能同时识别出系统中的未知参数. 最后的Matlab数值模拟验证了提出的理论结果的正确性和有效性.
    In this paper, Lorenz chaotic system with stochastic perturbation and unknown parameters is investigated, in which the stochastic perturbations is one-dimensional random process of the standard Wiener. Based on stochastic Lyapunov stability theory, It formula and adaptive control method combined with three adaptive control laws and two adaptive control laws respectively, two mean square Asymptotic adaptive synchronization standards are put forward theoretically. These new standards are in a simple form and easy to deal with. Moreover, with these standards, not only drive system with stochastic perturbations can be synchronized with the respond system, but also unknown parameters in the system can be identified. Finally, the Matlab numerical simulations confirm that the proposed results are correct and effective.
    • 基金项目: 国家自然科学基金(批准号: 60904060, 61104127)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60904060, 61104127).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chen G R, L J H 2003 The Dynamics Analysis, Control and Synchronization of the Family of Lorenz System (Beijing: Science press) (in Chinese) [陈关荣, 吕金虎 2003 Lorenz系统族的动力学分析、控制与同步 (北京:科学出版社) 第9页]

    [3]

    Stwart I 2002 Nature 406 948

    [4]

    Tucker W 1999 C R Acad Sci Paris 328 119

    [5]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. On Circuits & Systems-I 33 1072

    [6]

    Chen G R, Ueta T 1999 Int. J. of Bifur Chaos 9 1465

    [7]

    L J H, Chen G R 2002 Int. J. of Bifur Chaos 12 659

    [8]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [9]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [10]

    Hu M, Yang Y, Xu Z 2008 Phys. Lett. A 372 3228

    [11]

    Wang H, Han Z Z, Xie Q Y, Zhang W 2009 Commun Nonlinear Sci Numer Simul. 14 1410

    [12]

    Li G H 2005 Chin. Phys. 14 472

    [13]

    Park J H, Ji D H, Won S C, Lee S M 2008 Applied Mathematics and Computation 204 170

    [14]

    Hou Y Y, Liao T L, Yan J J 2007 Physica A 379 81

    [15]

    Liu B, Shi P M, Liu S 2009 Acta Phys. Sin. 58 074383 (in Chinese) [刘彬, 时培明, 刘爽 2009 物理学报 58 074383]

    [16]

    Zhao J C, Zhang Q J, Lu J A 2011 Chin. Phys. B 20 050507

    [17]

    Lin J S, Yan J J 2009 Nonlinear Anal RWA 10 1151

    [18]

    Li W L, Liu Z H, Miao J 2010 Commun Nonlinear Sci Numer Simulat 15 3015

    [19]

    Wu X, Lu J 2003 Chaos, Solitons and Fractals 18 721

    [20]

    Guo Z A, L L, Li Y, Xia X L 2007 Acta Phys. Sin. 56 95 (in Chinese) [郭治安, 吕翎, 李岩, 夏晓岚 2007 物理学报 56 95]

    [21]

    Tu L L, Lu J A 2005 Chin. Phys. 14 1755

    [22]

    Ma J, Su W T, Gao J Z 2010 Acta Phys. Sin. 59 1554 (in Chinese) [马军, 苏文涛, 高加振 2010 物理学报 59 1554]

    [23]

    Tu L L, Ke C, Ding Y M 2011 Acta Phys. Sin. 60 056803 (in Chinese) [涂俐兰, 柯超, 丁咏梅 2011 物理学报 60 056803]

    [24]

    Gong G L, Qian M P 2004 Application of Random process-and the random model in algorithm and intelligent computer (Beijing: Tsinghua University Press)

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chen G R, L J H 2003 The Dynamics Analysis, Control and Synchronization of the Family of Lorenz System (Beijing: Science press) (in Chinese) [陈关荣, 吕金虎 2003 Lorenz系统族的动力学分析、控制与同步 (北京:科学出版社) 第9页]

    [3]

    Stwart I 2002 Nature 406 948

    [4]

    Tucker W 1999 C R Acad Sci Paris 328 119

    [5]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. On Circuits & Systems-I 33 1072

    [6]

    Chen G R, Ueta T 1999 Int. J. of Bifur Chaos 9 1465

    [7]

    L J H, Chen G R 2002 Int. J. of Bifur Chaos 12 659

    [8]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Rev. Lett. 64 1196

    [9]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [10]

    Hu M, Yang Y, Xu Z 2008 Phys. Lett. A 372 3228

    [11]

    Wang H, Han Z Z, Xie Q Y, Zhang W 2009 Commun Nonlinear Sci Numer Simul. 14 1410

    [12]

    Li G H 2005 Chin. Phys. 14 472

    [13]

    Park J H, Ji D H, Won S C, Lee S M 2008 Applied Mathematics and Computation 204 170

    [14]

    Hou Y Y, Liao T L, Yan J J 2007 Physica A 379 81

    [15]

    Liu B, Shi P M, Liu S 2009 Acta Phys. Sin. 58 074383 (in Chinese) [刘彬, 时培明, 刘爽 2009 物理学报 58 074383]

    [16]

    Zhao J C, Zhang Q J, Lu J A 2011 Chin. Phys. B 20 050507

    [17]

    Lin J S, Yan J J 2009 Nonlinear Anal RWA 10 1151

    [18]

    Li W L, Liu Z H, Miao J 2010 Commun Nonlinear Sci Numer Simulat 15 3015

    [19]

    Wu X, Lu J 2003 Chaos, Solitons and Fractals 18 721

    [20]

    Guo Z A, L L, Li Y, Xia X L 2007 Acta Phys. Sin. 56 95 (in Chinese) [郭治安, 吕翎, 李岩, 夏晓岚 2007 物理学报 56 95]

    [21]

    Tu L L, Lu J A 2005 Chin. Phys. 14 1755

    [22]

    Ma J, Su W T, Gao J Z 2010 Acta Phys. Sin. 59 1554 (in Chinese) [马军, 苏文涛, 高加振 2010 物理学报 59 1554]

    [23]

    Tu L L, Ke C, Ding Y M 2011 Acta Phys. Sin. 60 056803 (in Chinese) [涂俐兰, 柯超, 丁咏梅 2011 物理学报 60 056803]

    [24]

    Gong G L, Qian M P 2004 Application of Random process-and the random model in algorithm and intelligent computer (Beijing: Tsinghua University Press)

计量
  • 文章访问数:  5789
  • PDF下载量:  848
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-21
  • 修回日期:  2012-10-21
  • 刊出日期:  2013-03-05

/

返回文章
返回