搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ConAl (n= 18)合金团簇结构和磁性质研究

吕瑾 秦健萍 武海顺

引用本文:
Citation:

ConAl (n= 18)合金团簇结构和磁性质研究

吕瑾, 秦健萍, 武海顺

Structural, electronic and magnetic properties of ConAl (n= 18) clusters

Lü Jin, Qin Jian-Ping, Wu Hai-Shun
PDF
导出引用
  • 采用密度泛函理论中的广义梯度近似(DFT-GGA)对ConAl (n= 18)合金团簇进行了系统的几何、 电子结构和磁性质研究. 研究结果表明Al原子倾向于与Co原子形成最大的成键数, 即Al原子均处在团簇原子拥有最大配位数的位置上. Al掺杂后ConAl团簇的稳定性减弱, 磁性降低. 磁性降低的幅度与实验上对较大ConAlM团簇的磁性检测结果获得了很好地符合. 在所有ConAl团簇的最稳定结构中, 除Co4Al外, Al与近邻Co原子均呈现反铁磁性耦合. 相对于纯Co团簇,非磁性Al元素的掺入以及Al掺杂后Co原子整体自旋极化的减弱 是导致ConAl团簇磁性的降低主要原因.
    Based on DFT-GGA calculations, we systematically investigate the structures, electronic and magnetic properties of ConAl (n= 18) clusters. The results indicate that the aluminum prefers to maximize the number of Co-Al bonds by selecting the site which increases the coordination of cobalt atoms with Al. The doped Al makes the stability of ConAl clusters weakened and the magnetism decreased as compared with that of Con+1 clusters. The reduction magnitude of magnetism of the doping Al accords well with recent Stern-Gerlach experimental result for larger ConAlM clusters. In all of the ConAl alloy clusters, the Al atom is found to be aligned antiferromagnetically with its neighbor Co atoms except for Co4Al. As compared with the magnetism of pure Co cluster, the magnetism of ConAl cluster is reduced, which is attributed mainly to nor-magnetism Al element embeding and the weakening of spin polarization of the Co atoms.
    • 基金项目: 山西省青年科技研究基金(批准号: 2012021020-1)资助的课题.
    • Funds: Project supported by the Youth Science and Technology Foundation of Shanxi Province (Grant No. 2012021020-1).
    [1]

    Alonso J A 2000 Chem. Rev. 100 637

    [2]

    Billas Isabelle M L, Châtelain A, de Heer Walt A 1994 Science 265 1682

    [3]

    Billas Isabelle M L, Châtelain A, de Heer Walt A 1997 J. Mag. Mag. Mat. 168 64

    [4]

    Xu X S, Yin S Y, Moro R, de Heer Walt A 2005 Phys. Rev. Lett. 95 237209

    [5]

    Knickelbein M B 2006 J. Chem. Phys. 125 044308

    [6]

    Andriotis A N, Menon M 1998 Phys. Rev. B 57 10069

    [7]

    Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A 2007 Phys. Rev. B 76 014429

    [8]

    Dong C D, Gong X G 2008 Phys. Rev. B 78 020409

    [9]

    Rodríguez-López J L, Aguilera-Granja F, Michaelian K, Vega A 2003 Phys. Rev. B 67 174413

    [10]

    Rives S, Catherinot A, Dumas-Bouchiat F, Champeaux C, Videcoq A, Ferrando R 2008 Phys. Rev. B 77 085407

    [11]

    Li Z Q, Gu B L 1993 Phys. Rev. B 47 13611

    [12]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y C, 2006 Phys. Lett. A 358 289

    [13]

    Yin S Y, Moro R, Xu X S, de Heer W A 2007 Phys. Rev. Lett. 98 113401

    [14]

    Ren F Z, Wang Y X, Tian F Y, Zhao W J, Luo Y H 2008 Acta Phys. Sin. 57 2165 (in chinese) [任凤竹、王渊旭、田付阳、赵文杰、罗有华 2008 物理学报 57 2165]

    [15]

    Ge G X, Jing Q, Cao H B, Yang Z Q, Tang G H, Yan, H X 2011 Acta Phys. Sin. 60 103102 (in Chinese) [葛桂贤, 井群, 曹海滨, 杨增强, 唐光辉, 闫红霞 2011 物理学报 60 103102]

    [16]

    Nonose S, Sone Y, Onodera K, Sudo S, Kaya K 1990 J. Phys. Chem. 94 2744

    [17]

    Nakajima A, Kishi T, Sugioka T, Sone Y, Kaya K 1991 J. Phys. Chem. 65 6833

    [18]

    Hihara T, Pokrant S, Becker J A 1998 Chem. Phys. Lett. 294 357

    [19]

    Knickelbein M B 2007 Phys. Rev. B 75 014401

    [20]

    Yin S Y 2006 Ph. D. Dissertation (Atlanta: School of Physics Georgia Institute of Technology)

    [21]

    Ganguly S, Kabir M, Datta S, Sanyal B, Mookerjee A 2008 Phys. Rev. B 78 014402

    [22]

    Shen N F, Wang J L, Zhu L Y 2008 Chem. Phys. Lett. 467 114

    [23]

    Wu P, Yuan L F, Yang J L 2008 J. Phys. Chem. A 112 12320

    [24]

    Rollmann G, Sahoo S, Hucht A, Entel P 2008 Phys. Rev. B 78 134404

    [25]

    Delley B 1990 J. Chem. Phys. 92 508; 2000 113 7756

    [26]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [27]

    Zhang Y, Duan Y N, Zhang J M, Xu K W 2011 J. Mag. Mag. Mat. 323 842

    [28]

    Tian F Y, Jing Q, Wang Y X 2008 Phys. Rev. A 77 013202

    [29]

    Zhao G F, Zhang J, Jing Q, Luo Y H, Wang Y X 2007 J. Chem. Phys. 127 234312

    [30]

    Kant A, Strauss B 1964 J. Chem. Phys. 41 3806

    [31]

    Calleja M, Rey C, Alemany M M G, Gallego L J, Ordejón P, Sánchez-Portal D, Artacho E, Soler J M 1999 Phys. Rev. B 60 2020

    [32]

    Rao B K, Jena P 1990 Appl. Phys. Lett. 57 2308

    [33]

    Deshpande M, Kanhere D G, Pandey R 2005 Phys. Rev. A 71 063202

    [34]

    Deshpande M D, Roy S, Kanhere D G 2007 Phys. Rev. B 76 195423

    [35]

    Kittel C 2005 Introduction to Solid State Physics (8th ed) (Wiley, New York) p50

    [36]

    Wang X, Cao Z X, Lv X, Lin M H, Zhang Q E 2005 J. Chem. Phys. 123 064315

    [37]

    Mazin I I 1999 Phys. Rev. Lett. 83 1427

    [38]

    Duan H M, Zheng Q Q 2001 Phys. Lett. A 280 333

    [39]

    Zhang G W, Feng Y P, Ong C K 1996 Phys. Rev. B 54 17208

    [40]

    Turek I, Hafner J 1992 Phys. Rev. B 46 247

    [41]

    Turek I, Becker C, Hafner J 1992 J. Phys.: Condens. Matter 4 7257

  • [1]

    Alonso J A 2000 Chem. Rev. 100 637

    [2]

    Billas Isabelle M L, Châtelain A, de Heer Walt A 1994 Science 265 1682

    [3]

    Billas Isabelle M L, Châtelain A, de Heer Walt A 1997 J. Mag. Mag. Mat. 168 64

    [4]

    Xu X S, Yin S Y, Moro R, de Heer Walt A 2005 Phys. Rev. Lett. 95 237209

    [5]

    Knickelbein M B 2006 J. Chem. Phys. 125 044308

    [6]

    Andriotis A N, Menon M 1998 Phys. Rev. B 57 10069

    [7]

    Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A 2007 Phys. Rev. B 76 014429

    [8]

    Dong C D, Gong X G 2008 Phys. Rev. B 78 020409

    [9]

    Rodríguez-López J L, Aguilera-Granja F, Michaelian K, Vega A 2003 Phys. Rev. B 67 174413

    [10]

    Rives S, Catherinot A, Dumas-Bouchiat F, Champeaux C, Videcoq A, Ferrando R 2008 Phys. Rev. B 77 085407

    [11]

    Li Z Q, Gu B L 1993 Phys. Rev. B 47 13611

    [12]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y C, 2006 Phys. Lett. A 358 289

    [13]

    Yin S Y, Moro R, Xu X S, de Heer W A 2007 Phys. Rev. Lett. 98 113401

    [14]

    Ren F Z, Wang Y X, Tian F Y, Zhao W J, Luo Y H 2008 Acta Phys. Sin. 57 2165 (in chinese) [任凤竹、王渊旭、田付阳、赵文杰、罗有华 2008 物理学报 57 2165]

    [15]

    Ge G X, Jing Q, Cao H B, Yang Z Q, Tang G H, Yan, H X 2011 Acta Phys. Sin. 60 103102 (in Chinese) [葛桂贤, 井群, 曹海滨, 杨增强, 唐光辉, 闫红霞 2011 物理学报 60 103102]

    [16]

    Nonose S, Sone Y, Onodera K, Sudo S, Kaya K 1990 J. Phys. Chem. 94 2744

    [17]

    Nakajima A, Kishi T, Sugioka T, Sone Y, Kaya K 1991 J. Phys. Chem. 65 6833

    [18]

    Hihara T, Pokrant S, Becker J A 1998 Chem. Phys. Lett. 294 357

    [19]

    Knickelbein M B 2007 Phys. Rev. B 75 014401

    [20]

    Yin S Y 2006 Ph. D. Dissertation (Atlanta: School of Physics Georgia Institute of Technology)

    [21]

    Ganguly S, Kabir M, Datta S, Sanyal B, Mookerjee A 2008 Phys. Rev. B 78 014402

    [22]

    Shen N F, Wang J L, Zhu L Y 2008 Chem. Phys. Lett. 467 114

    [23]

    Wu P, Yuan L F, Yang J L 2008 J. Phys. Chem. A 112 12320

    [24]

    Rollmann G, Sahoo S, Hucht A, Entel P 2008 Phys. Rev. B 78 134404

    [25]

    Delley B 1990 J. Chem. Phys. 92 508; 2000 113 7756

    [26]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [27]

    Zhang Y, Duan Y N, Zhang J M, Xu K W 2011 J. Mag. Mag. Mat. 323 842

    [28]

    Tian F Y, Jing Q, Wang Y X 2008 Phys. Rev. A 77 013202

    [29]

    Zhao G F, Zhang J, Jing Q, Luo Y H, Wang Y X 2007 J. Chem. Phys. 127 234312

    [30]

    Kant A, Strauss B 1964 J. Chem. Phys. 41 3806

    [31]

    Calleja M, Rey C, Alemany M M G, Gallego L J, Ordejón P, Sánchez-Portal D, Artacho E, Soler J M 1999 Phys. Rev. B 60 2020

    [32]

    Rao B K, Jena P 1990 Appl. Phys. Lett. 57 2308

    [33]

    Deshpande M, Kanhere D G, Pandey R 2005 Phys. Rev. A 71 063202

    [34]

    Deshpande M D, Roy S, Kanhere D G 2007 Phys. Rev. B 76 195423

    [35]

    Kittel C 2005 Introduction to Solid State Physics (8th ed) (Wiley, New York) p50

    [36]

    Wang X, Cao Z X, Lv X, Lin M H, Zhang Q E 2005 J. Chem. Phys. 123 064315

    [37]

    Mazin I I 1999 Phys. Rev. Lett. 83 1427

    [38]

    Duan H M, Zheng Q Q 2001 Phys. Lett. A 280 333

    [39]

    Zhang G W, Feng Y P, Ong C K 1996 Phys. Rev. B 54 17208

    [40]

    Turek I, Hafner J 1992 Phys. Rev. B 46 247

    [41]

    Turek I, Becker C, Hafner J 1992 J. Phys.: Condens. Matter 4 7257

  • [1] 阴敏, 张敏, 吕瑾, 武海顺. TM@Cu12N12团簇磁性第一性原理研究. 物理学报, 2019, 68(20): 203102. doi: 10.7498/aps.68.20190737
    [2] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [3] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [4] 秦健萍, 梁瑞瑞, 吕瑾, 武海顺. ComAln(m+n ≤ 6)团簇的结构和磁性理论研究. 物理学报, 2014, 63(13): 133102. doi: 10.7498/aps.63.133102
    [5] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [6] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [7] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [8] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [9] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [10] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [11] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性. 物理学报, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [12] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [13] 刘立仁, 雷雪玲, 陈杭, 祝恒江. Bn(n=2—15)团簇的几何结构和电子性质. 物理学报, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [14] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究. 物理学报, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [15] 陈宣, 彭霞, 邓开明, 肖传云, 胡凤兰, 谭伟石. 笼状Au20内掺M13(M=Fe,Ti)团簇磁性的密度泛函计算研究. 物理学报, 2009, 58(8): 5370-5375. doi: 10.7498/aps.58.5370
    [16] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华. 密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性. 物理学报, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [17] 雷雪玲, 王清林, 闫玉丽, 赵文杰, 杨 致, 罗有华. 利用密度泛函理论研究BnNi(n≤5)小团簇的结构和磁性. 物理学报, 2007, 56(8): 4484-4490. doi: 10.7498/aps.56.4484
    [18] 陈 宣, 卢功利, 唐春梅, 邓开明, 谭伟石. M2Sn17(M=Ni,Mn)及其阴离子的几何结构、电子结构和磁性的计算研究. 物理学报, 2007, 56(9): 5216-5220. doi: 10.7498/aps.56.5216
    [19] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  4631
  • PDF下载量:  723
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-03
  • 修回日期:  2012-10-07
  • 刊出日期:  2013-03-05

ConAl (n= 18)合金团簇结构和磁性质研究

  • 1. 山西师范大学化学与材料科学学院, 临汾 041004
    基金项目: 山西省青年科技研究基金(批准号: 2012021020-1)资助的课题.

摘要: 采用密度泛函理论中的广义梯度近似(DFT-GGA)对ConAl (n= 18)合金团簇进行了系统的几何、 电子结构和磁性质研究. 研究结果表明Al原子倾向于与Co原子形成最大的成键数, 即Al原子均处在团簇原子拥有最大配位数的位置上. Al掺杂后ConAl团簇的稳定性减弱, 磁性降低. 磁性降低的幅度与实验上对较大ConAlM团簇的磁性检测结果获得了很好地符合. 在所有ConAl团簇的最稳定结构中, 除Co4Al外, Al与近邻Co原子均呈现反铁磁性耦合. 相对于纯Co团簇,非磁性Al元素的掺入以及Al掺杂后Co原子整体自旋极化的减弱 是导致ConAl团簇磁性的降低主要原因.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回