搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态锂电池中的机械力学失效及解决策略

梁宇皓 范丽珍

引用本文:
Citation:

固态锂电池中的机械力学失效及解决策略

梁宇皓, 范丽珍

Mechanical failures in solid-state lithium batteries and their solution

Liang Yu-Hao, Fan Li-Zhen
PDF
HTML
导出引用
  • 固态锂电池中电极材料与固态电解质的力学性能对于电池的机械稳定性有重要影响, 如果电池内部的应力超过材料的强度, 则会在固态电池内部发生不同规模、不同组分的机械力学失效, 从而严重恶化电池的电化学性能. 本文从提高固态电池机械稳定性的角度出发, 阐述了固态电池中各组分的力学性能对固态电池机械稳定性的影响, 并分析了影响材料力学性能的因素. 另外, 固态锂电池在电池充放电过程中出现的机械力学失效问题, 包括电极材料/电解质的破裂/断裂、电极与电解质的接触损失以及由于锂枝晶引发的电池短路等, 也在综述中被讨论. 最后, 总结了目前解决固态锂电池中机械力学失效的一些常用策略, 并对未来该领域的研究方向进行了展望. 本文讨论的固态锂电池中的机械力学失效以及解决策略将有助于研究人员构筑高能量密度、长寿命、更安全的固态锂电池.
    The mechanical properties of electrode materials and solid-state electrolytes in solid-state batteries (SSBs) have an important influence on the mechanical stabilties of SSBs. Mechanical failures in SSBs on different scales and in different components will occur once the stress inside SSBs exceeds the materials’ strengths, which seriously deteriorates the electrochemical performances of SSBs. From the perspective of stabilizing the mechanical stabilities of SSBs, in this review we describe the influences of the mechanical properties of each component in SSBs on the mechanical stabilites of SSBs, and we analyze the factors that affect the mechanical properties of materials. In addition, we also discuss the mechanical failures of SSBs during cycle, including electrode materials’ or solid-state electrolytes’ fractures, electrode-electrolyte contact losses, and short-circuits due to lithium dendrites. Finally, we summarize some common strategies to mitigate the mechanical failures in SSBs, and look forward to the future research directions in this field. Overall, the mechanical failures in SSBs and their strategies discussed in this review will help researchers build SSBs with higher energy density, longer life and higher safety.
      通信作者: 范丽珍, fanlizhen@ustb.edu.cn
      Corresponding author: Fan Li-Zhen, fanlizhen@ustb.edu.cn
    [1]

    Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Electrochem. Energy Rev. 2 1Google Scholar

    [2]

    Choi J W, Aurbach D 2016 Nat. Rev. Mater. 1 16013Google Scholar

    [3]

    Li W, Erickson E M, Manthiram A 2020 Nat. Energy 5 26Google Scholar

    [4]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [5]

    Deng J, Bae C, Denlinger A, Miller T 2020 Joule 4 511Google Scholar

    [6]

    Li H 2019 Joule 3 911Google Scholar

    [7]

    Wu F, Maier J, Yu Y 2020 Chem. Soc. Rev. 49 1569Google Scholar

    [8]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [9]

    Lopez J, Mackanic D G, Cui Y, Bao Z 2019 Nat. Rev. Mater. 4 312Google Scholar

    [10]

    Boaretto N, Meabe L, Martinez Ibañez M, Armand M, Zhang H 2020 J. Electrochem. Soc. 167 070524Google Scholar

    [11]

    Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W 2019 Joule 3 1190Google Scholar

    [12]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [13]

    Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H 2019 Adv. Mater. 31 1901131Google Scholar

    [14]

    Hu Y S 2016 Nat. Energy 1 16042Google Scholar

    [15]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [16]

    Cao Y, Li M, Lu J, Liu J, Amine K 2019 Nat. Nanotechnol. 14 200Google Scholar

    [17]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [18]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [19]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [20]

    Chen H, Ling M, Hencz L, Ling H Y, Li G, Lin Z, Liu G, Zhang S 2018 Chem. Rev. 118 8936Google Scholar

    [21]

    Zhang F, Huang Q A, Tang Z, Li A, Shao Q, Zhang L, Li X, Zhang J 2020 Nano Energy 70 104545Google Scholar

    [22]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 222Google Scholar

    [23]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 396Google Scholar

    [24]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [25]

    Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G 2018 J. Power Sources 382 160Google Scholar

    [26]

    Liang J, Luo J, Sun Q, Yang X, Li R, Sun X 2019 Energy Storage Mater. 21 308Google Scholar

    [27]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [28]

    Judez X, Eshetu G G, Li C, Rodriguez Martinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [29]

    Cho Y H, Wolfenstine J, Rangasamy E, Kim H, Choe H, Sakamoto J 2012 J. Mater. Sci. 47 5970

    [30]

    Kim Y, Jo H, Allen J L, Choe H, Wolfenstine J, Sakamoto J 2016 J. Am. Ceram. Soc. 99 1367Google Scholar

    [31]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65

    [32]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [33]

    McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X, Chiang Y M, Van Vliet K J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [34]

    Deng Z, Wang Z, Chu I H, Luo J, Ong S P 2015 J. Electrochem. Soc. 163 A67

    [35]

    Xie J, Duan R G, Han Y, Kerr J B 2004 Solid State Ionics 175 755Google Scholar

    [36]

    Ji J, Li B, Zhong W H 2010 J. Phys. Chem. B 114 13637Google Scholar

    [37]

    Chen Yang Y W, Chen H C, Lin F J, Chen C C 2002 Solid State Ionics 150 327Google Scholar

    [38]

    Chung N K, Kwon Y D, Kim D 2003 J. Power Sources 124 148Google Scholar

    [39]

    Mukhopadhyay A, Sheldon B W 2014 Prog. Mater Sci. 63 58Google Scholar

    [40]

    Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, Tu J P 2017 J. Mater. Chem. A 5 6310Google Scholar

    [41]

    Qi Y, Guo H, Hector L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar

    [42]

    Beaulieu L Y, Eberman K W, Turner R L, Krause L J, Dahn J R 2001 Electrochem. Solid-State Lett. 4 A137Google Scholar

    [43]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [44]

    Kim J, Lee H, Cha H, Yoon M, Park M, Cho J 2018 Adv. Energy Mater. 8 1702028Google Scholar

    [45]

    Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226Google Scholar

    [46]

    Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S 2018 Adv. Energy Mater. 8 1800035Google Scholar

    [47]

    Reimers J, Dahn J 1992 J. Electrochem. Soc. 139 2091Google Scholar

    [48]

    Su L, Jing Y, Zhou Z 2011 Nanoscale 3 3967Google Scholar

    [49]

    Yin S C, Rho Y H, Swainson I, Nazar L F 2006 Chem. Mater. 18 1901Google Scholar

    [50]

    Padhi A K 1997 J. Electrochem. Soc. 144 1188Google Scholar

    [51]

    Han F, Yue J, Fan X, Gao T, Luo C, Ma Z, Suo L, Wang C 2016 Nano Lett. 16 4521Google Scholar

    [52]

    Ohzuku T 1995 J. Electrochem. Soc. 142 1431Google Scholar

    [53]

    Nonemacher J F, Hüter C, Zheng H, Malzbender J, Krüger M, Spatschek R, Finsterbusch M 2018 Solid State Ionics 321 126Google Scholar

    [54]

    Sharafi A, Haslam C G, Kerns R D, Wolfenstine J, Sakamoto J 2017 J. Mater. Chem. A 5 21491Google Scholar

    [55]

    Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough J B 2018 J. Am. Chem. Soc. 140 6448Google Scholar

    [56]

    Dai J, Yang C, Wang C, Pastel G, Hu L 2018 Adv. Mater. 30 1802068Google Scholar

    [57]

    Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B 2020 ACS Energy Lett. 5 1136Google Scholar

    [58]

    Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S, Sun Y K 2019 ACS Energy Lett. 4 1394Google Scholar

    [59]

    Zhou H, Xin F, Pei B, Whittingham M S 2019 ACS Energy Lett. 4 1902Google Scholar

    [60]

    Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K 2018 Adv. Energy Mater. 8 1801202Google Scholar

    [61]

    Ryu H H, Park K J, Yoon D R, Aishova A, Yoon C S, Sun Y K 2019 Adv. Energy Mater. 9 1902698Google Scholar

    [62]

    Kim H, Lee E J, Sun Y K 2014 Mater. Today 17 285Google Scholar

    [63]

    Smith S, Thompson T, Sakamoto J, Allen J L, Baker D R, Wolfenstine J 2017 Solid State Ionics 300 38Google Scholar

    [64]

    Dixit M B, Zaman W, Bootwala Y, Zheng Y, Hatzell M C, Hatzell K B 2019 ACS Appl. Mater. Interfaces 11 45087Google Scholar

    [65]

    Troy S, Schreiber A, Reppert T, Gehrke H G, Finsterbusch M, Uhlenbruck S, Stenzel P 2016 Appl. Energy 169 757Google Scholar

    [66]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Sci. Rep. 3 2261Google Scholar

    [67]

    Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M 2018 ACS Appl. Energy Mater. 1 1002Google Scholar

    [68]

    Aidoud D, Etiemble A, Guy Bouyssou D, Maire E, Le Bideau J, Guyomard D, Lestriez B 2016 J. Power Sources 330 92Google Scholar

    [69]

    Weston J E, Steele B C H 1982 Solid State Ionics 7 75Google Scholar

    [70]

    Arya A, Sharma A L 2020 J. Mater. Sci. 55 6242Google Scholar

    [71]

    Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T 2005 J. Power Sources 141 143Google Scholar

    [72]

    Lee W, Lyon C K, Seo J H, Lopez-Hallman R, Leng Y, Wang C Y, Hickner M A, Randall C A, Gomez E D 2019 Adv. Funct. Mater. 29 1807872Google Scholar

    [73]

    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Adv. Sci. 7 1903088Google Scholar

    [74]

    Hu X, Yan G, Cheng X, Malzbender J, Qiang W, Huang B 2019 J. Am. Ceram. Soc. 102 1953

    [75]

    Hu X, Cheng X, Qin S, Yan G, Malzbender J, Qiang W, Huang B 2018 Ceram. Int. 44 1902Google Scholar

    [76]

    Ishidzu K, Oka Y, Nakamura T 2016 Solid State Ionics 288 176Google Scholar

    [77]

    Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J 2017 Adv. Energy Mater. 7 1601507Google Scholar

    [78]

    Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X 2019 Adv. Energy Mater. 9 1803963Google Scholar

    [79]

    Zhang C, Xu S, Han B, Lin G, Huang Q, Ivey D G, Yang C, Wang P, Wei W 2019 J. Power Sources 431 40Google Scholar

    [80]

    Wu B, Wang S, Evans Iv W J, Deng D Z, Yang J, Xiao J 2016 J. Mater. Chem. A 4 15266Google Scholar

    [81]

    Li H, Liu A, Zhang N, Wang Y, Yin S, Wu H, Dahn J R 2019 Chem. Mater. 31 7574Google Scholar

    [82]

    Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q 2016 Adv. Sci. 3 1500213Google Scholar

    [83]

    Waetzig K, Rost A, Langklotz U, Matthey B, Schilm J 2016 J. Eur. Ceram. Soc. 36 1995Google Scholar

    [84]

    Bucci G, Swamy T, Chiang Y M, Carter W C 2017 J. Mater. Chem. A 5 19422Google Scholar

    [85]

    Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J 2017 Chem. Mater. 29 5574Google Scholar

    [86]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2019 Nat. Rev. Mater. 5 105

    [87]

    Kuang Y, Chen C, Kirsch D, Hu L 2019 Adv. Energy Mater. 9 1901457Google Scholar

    [88]

    Devaux D, Harry K J, Parkinson D Y, Yuan R, Hallinan D T, MacDowell A A, Balsara N P 2015 J. Electrochem. Soc. 162 A1301Google Scholar

    [89]

    Liu T, Zhang Y, Chen R, Zhao S X, Lin Y, Nan C W, Shen Y 2017 Electrochem. Commun. 79 1Google Scholar

    [90]

    Huang W, Zhao N, Bi Z, Shi C, Guo X, Fan L, Nan C 2020 Mater. Today Nano 10 100075Google Scholar

    [91]

    Dixit M B, Zaman W, Hortance N, Vujic S, Harkey B, Shen F, Tsai W Y, De Andrade V, Chen X C, Balke N, Hatzell K B 2020 Joule 4 207Google Scholar

    [92]

    Zhao N, Fang R, He M H, Chen C, Li Y Q, Bi Z J, Guo X X 2018 Rare Met. 37 473Google Scholar

    [93]

    Sakamoto J 2019 Nat. Energy 4 827Google Scholar

    [94]

    Kim S H, Kim K, Choi H, Im D, Heo S, Choi H S 2019 J. Mater. Chem. A 7 13650Google Scholar

    [95]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [96]

    Xia S, Wu X, Zhang Z, Cui Y, Liu W 2019 Chem. 5 753Google Scholar

    [97]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [98]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V, Westover A S, Zeier W G 2020 ACS Energy Lett. 5 922Google Scholar

    [99]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [100]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [101]

    Zhang X, Wang A, Liu X, Luo J 2019 Acc. Chem. Res. 52 3223Google Scholar

    [102]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [103]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2019 Adv. Energy Mater. 10 1903253

    [104]

    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J G 2018 Nat. Energy 3 600Google Scholar

    [105]

    Jung S H, Kim U H, Kim J H, Jun S, Yoon C S, Jung Y S, Sun Y K 2019 Adv. Energy Mater. 10 1903360

    [106]

    Liu Y, Harlow J, Dahn J 2020 J. Electrochem. Soc. 167 020512Google Scholar

    [107]

    Lee H, Oh P, Kim J, Cha H, Chae S, Lee S, Cho J 2019 Adv. Mater. 31 1900376Google Scholar

    [108]

    Zeng H, Ji X, Tsai F, Zhang Q, Jiang T, Li R K Y, Shi H, Luan S, Shi D 2018 Solid State Ionics 320 92Google Scholar

    [109]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [110]

    Bi Z, Zhao N, Ma L, Fu Z, Xu F, Wang C, Guo X 2020 Chem. Eng. J. 387 124089Google Scholar

    [111]

    Bi Z, Zhao N, Ma L, Shi C, Fu Z, Xu F, Guo X 2020 J. Mater. Chem. A 8 4252Google Scholar

    [112]

    Zhang X D, Shi J L, Liang J Y, Wang L P, Yin Y X, Jiang K C, Guo Y G 2019 J. Power Sources 426 242Google Scholar

    [113]

    Yubuchi S, Ito Y, Matsuyama T, Hayashi A, Tatsumisago M 2016 Solid State Ionics 285 79Google Scholar

    [114]

    Ito Y, Otoyama M, Hayashi A, Ohtomo T, Tatsumisago M 2017 J. Power Sources 360 328Google Scholar

    [115]

    Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Energy Environ. Sci. 11 2142Google Scholar

    [116]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Scientific Reports 3 2261

    [117]

    Shi T, Tu Q, Tian Y, Xiao Y, Miara L J, Kononova O, Ceder G 2019 Adv. Energy Mater. 10 1902881

    [118]

    Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 8051Google Scholar

    [119]

    Li Y, Wang Z, Li C, Cao Y, Guo X 2014 J. Power Sources 248 642Google Scholar

    [120]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [121]

    Liu Y, Sun Q, Wang D, Adair K, Liang J, Sun X 2018 J. Power Sources 393 193Google Scholar

    [122]

    Guo J, Berbano S S, Guo H, Baker A L, Lanagan M T, Randall C A 2016 Adv. Funct. Mater. 26 7115Google Scholar

    [123]

    Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J 2017 Nano Energy 33 363Google Scholar

    [124]

    Wang X, Zhang Y, Zhang X, Liu T, Lin Y H, Li L, Shen Y, Nan C W 2018 ACS Appl. Mater. Interfaces 10 24791Google Scholar

    [125]

    Pervez S A, Ganjeh Anzabi P, Farooq U, Trifkovic M, Roberts E P L, Thangadurai V 2019 Adv. Mater. Interfaces 6 1900186

    [126]

    Huo H, Sun J, chen C, Meng X, He M, Zhao N, Guo X 2018 J. Power Sources 383 150Google Scholar

    [127]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [128]

    Gai J, Ma F, Zhang Z, Sun D, Jin Y, Guo Y, Kim W 2019 ACS Sustainable Chem. Eng. 7 15896Google Scholar

    [129]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [130]

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [131]

    Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G 2019 Adv. Mater. 31 1807789Google Scholar

    [132]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 A222

    [133]

    Xu B, Li W, Duan H, Wang H, Guo Y, Li H, Liu H 2017 J. Power Sources 354 68Google Scholar

    [134]

    Choudhury S, Vu D, Warren A, Tikekar M D, Tu Z, Archer L A 2018 Proc. Natl. Acad. Sci. 115 6620Google Scholar

  • 图 1  材料典型的应力-应变曲线

    Fig. 1.  A typical stress-strain curve of materials.

    图 2  NCA89和NCW90材料的 (a) ac轴晶格参数; (b)晶胞体积随着电池电压的变化图; (c) NCA89和(d) NCW90材料在充电到4.3 V下截面的明场STEM-mosaic图[61]

    Fig. 2.  Changes in (a) a- and c-axis lattice parameters and (b) unit cell volumes for NCA89 and NCW90 as a function of the cell voltage; bright-filed STEM mosaic image of a cross-section of (c) NCA89 and (d) NCW90 at charged to 4.3 V[61].

    图 3  (100–y)(0.75 Li2S·0.25 P2S5) ·yLiI(mol%)(y=0, 5, 10, 20, 和30)玻璃的杨氏模量和LiI含量的关系[67]

    Fig. 3.  Relationship between the Young’s moduli and LiI content of (100–y)(0.75 Li2S·0.25 P2S5) ·yLiI(mol%)(y=0, 5, 10, 20, and 30) glasses[67].

    图 4  LiCoO2在电池循环后破裂的SEM图[45]

    Fig. 4.  SEM images of fracturing of LiCoO2 particles in cycled battery[45].

    图 5  NCM811/β-Li3PS4/In全固态电池首次循环不可逆容量损失的示意图[85]

    Fig. 5.  Schematic diagram of the irreversible first cycle capacity loss of the NCM811/β-Li3PS4/In all-solid-state battery[85].

    图 6  堆叠压力对锂金属固态电池短路行为的影响示意图 (a) 在电池制备期间, 在对电池施加压力之前, 电解质和锂金属之间的接触不良; (b)在25 MPa的压力下, 锂金属和电解质的物理接触得到改善; (c)即使随后将压力降低到5 MPa, 也会使锂对称电池的阻抗大幅降低; (d)在5 MPa的堆叠压力下进行沉积/剥离测试, 未观察到Li在电解质颗粒内部蠕变的现象; (e)在25 MPa的压力下, Li在电解质的晶粒之间缓慢蠕变, 并且在这些枝晶上产生沉积过程, 最终在48 h后电池发生短路; (f)当电池的堆叠压力过高时, Li会通过蠕变在电解质中形成树枝状枝晶, 从而使电池机械短路[103]

    Fig. 6.  Schematic of the effect of the stack pressure on the shorting behavior of Li metal solid-state batteries: (a) During cell fabrication, the contact between the electrolyte and Li metal is poor before pressing the Li metal on the electrolyte pellet; (b) Pressing the Li metal at 25 MPa allows for proper wetting of the electrolyte and (c) induces a large drop in the symmetric cell impedance, even when the pressure is later released to 5 MPa; (d) plating and stripping at a stack pressure of 5 MPa, no creeping of Li inside the SSE pellet is observed; (e) at a stack pressure of 25 MPa, Li slowly creeps between the grains of the SSE and plating occurs on these dendrites, eventually shorting the cell after 48 h; (f) when the stack pressure is too high, Li creeps through the electrolyte and forms dendrites that mechanically short the cell[103].

    图 7  全固态电池中NCA80和FCG75电极的不同微观结构和界面演化示意图[105]

    Fig. 7.  Schematic diagram of the different microstructural and interfical evolutions in the NCA80 and FCG75 electrodes in all-solid-state batteries[105].

    图 8  PIC–5 μm, CIP–200 nm和多层“三明治”型复合固态电解质的示意图[130]

    Fig. 8.  The schematic illustration of the PIC–5 µm, CIP–200 nm, and hierarchical sandwich-type composite electrolytes[130].

    表 1  固态电池材料的力学性能

    Table 1.  Mechanical properties of solid-state battery materials.

    电池材料杨氏模量/GPa剪切模量/GPa硬度/GPa泊松比(B/G)Kc/MPa·m1/2
    氧化物电解质Li0.33La0.57TiO3[29]200809.21.66~1
    Li7La3Zr2O12[30]15059.69.11.720.92–2.73
    Li1.3Al0.3Ti1.7(PO4)3[31]1157.11.10
    Li6.5La3Zr1.5Ta0.5O12[32]153.8 ± 2.761.2 ± 1.11.59
    硫化物电解质Li2S-P2S5[33]18.57.1 ± 0.31.90.23 ± 0.04
    Li7P3S11[34]
    Li10GeP2S12[34]21.77.93.44
    Li10SnP2S12[34]29.111.22.09
    Li5PS5Cl[34]22.18.13.57
    聚合物电解质PEO+LiTFSI[35]~10–6
    PEO+ LiClO4[36]14.5 × 10–3
    PAN+LiClO4[37]1.6 × 103
    PVDF+LiBF4[38]0.3 × 10–3
    电极材料LiCoO2[33]178—1918.30.94
    LiFePO4[39]125.948.92.02
    NCM[40]19811
    石墨[41]32122.34
    Si[42]11316.6
    Li[33]54.2510–3
    下载: 导出CSV

    表 2  电极材料在电池循环过程中的体积变化

    Table 2.  Volume variation of electrode materials during battery cycle.

    电极材料嵌锂/锂化产物体积变化/%
    正极LiCoO2Li0.5CoO22[47]
    LiNiO2Li0.5NiO22.8[48]
    LiMnO2Li0.5MnO25.6[48]
    LiNi1/3Co1/3
    Mn1/3O2
    Li0.04Ni1/3Co1/3
    Mn1/3O2
    7.2[49]
    LiFePO4FePO47[50]
    SLi2S76[51]
    负极SiLi15Si4310[42]
    石墨LiC613[41]
    Li4Ti5O12Li2[Li1/3Ti5/3]O40.2[52]
    下载: 导出CSV
  • [1]

    Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Electrochem. Energy Rev. 2 1Google Scholar

    [2]

    Choi J W, Aurbach D 2016 Nat. Rev. Mater. 1 16013Google Scholar

    [3]

    Li W, Erickson E M, Manthiram A 2020 Nat. Energy 5 26Google Scholar

    [4]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [5]

    Deng J, Bae C, Denlinger A, Miller T 2020 Joule 4 511Google Scholar

    [6]

    Li H 2019 Joule 3 911Google Scholar

    [7]

    Wu F, Maier J, Yu Y 2020 Chem. Soc. Rev. 49 1569Google Scholar

    [8]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [9]

    Lopez J, Mackanic D G, Cui Y, Bao Z 2019 Nat. Rev. Mater. 4 312Google Scholar

    [10]

    Boaretto N, Meabe L, Martinez Ibañez M, Armand M, Zhang H 2020 J. Electrochem. Soc. 167 070524Google Scholar

    [11]

    Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W 2019 Joule 3 1190Google Scholar

    [12]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [13]

    Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H 2019 Adv. Mater. 31 1901131Google Scholar

    [14]

    Hu Y S 2016 Nat. Energy 1 16042Google Scholar

    [15]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [16]

    Cao Y, Li M, Lu J, Liu J, Amine K 2019 Nat. Nanotechnol. 14 200Google Scholar

    [17]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [18]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [19]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [20]

    Chen H, Ling M, Hencz L, Ling H Y, Li G, Lin Z, Liu G, Zhang S 2018 Chem. Rev. 118 8936Google Scholar

    [21]

    Zhang F, Huang Q A, Tang Z, Li A, Shao Q, Zhang L, Li X, Zhang J 2020 Nano Energy 70 104545Google Scholar

    [22]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 222Google Scholar

    [23]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 396Google Scholar

    [24]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [25]

    Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G 2018 J. Power Sources 382 160Google Scholar

    [26]

    Liang J, Luo J, Sun Q, Yang X, Li R, Sun X 2019 Energy Storage Mater. 21 308Google Scholar

    [27]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [28]

    Judez X, Eshetu G G, Li C, Rodriguez Martinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [29]

    Cho Y H, Wolfenstine J, Rangasamy E, Kim H, Choe H, Sakamoto J 2012 J. Mater. Sci. 47 5970

    [30]

    Kim Y, Jo H, Allen J L, Choe H, Wolfenstine J, Sakamoto J 2016 J. Am. Ceram. Soc. 99 1367Google Scholar

    [31]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65

    [32]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [33]

    McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X, Chiang Y M, Van Vliet K J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [34]

    Deng Z, Wang Z, Chu I H, Luo J, Ong S P 2015 J. Electrochem. Soc. 163 A67

    [35]

    Xie J, Duan R G, Han Y, Kerr J B 2004 Solid State Ionics 175 755Google Scholar

    [36]

    Ji J, Li B, Zhong W H 2010 J. Phys. Chem. B 114 13637Google Scholar

    [37]

    Chen Yang Y W, Chen H C, Lin F J, Chen C C 2002 Solid State Ionics 150 327Google Scholar

    [38]

    Chung N K, Kwon Y D, Kim D 2003 J. Power Sources 124 148Google Scholar

    [39]

    Mukhopadhyay A, Sheldon B W 2014 Prog. Mater Sci. 63 58Google Scholar

    [40]

    Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, Tu J P 2017 J. Mater. Chem. A 5 6310Google Scholar

    [41]

    Qi Y, Guo H, Hector L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar

    [42]

    Beaulieu L Y, Eberman K W, Turner R L, Krause L J, Dahn J R 2001 Electrochem. Solid-State Lett. 4 A137Google Scholar

    [43]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [44]

    Kim J, Lee H, Cha H, Yoon M, Park M, Cho J 2018 Adv. Energy Mater. 8 1702028Google Scholar

    [45]

    Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226Google Scholar

    [46]

    Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S 2018 Adv. Energy Mater. 8 1800035Google Scholar

    [47]

    Reimers J, Dahn J 1992 J. Electrochem. Soc. 139 2091Google Scholar

    [48]

    Su L, Jing Y, Zhou Z 2011 Nanoscale 3 3967Google Scholar

    [49]

    Yin S C, Rho Y H, Swainson I, Nazar L F 2006 Chem. Mater. 18 1901Google Scholar

    [50]

    Padhi A K 1997 J. Electrochem. Soc. 144 1188Google Scholar

    [51]

    Han F, Yue J, Fan X, Gao T, Luo C, Ma Z, Suo L, Wang C 2016 Nano Lett. 16 4521Google Scholar

    [52]

    Ohzuku T 1995 J. Electrochem. Soc. 142 1431Google Scholar

    [53]

    Nonemacher J F, Hüter C, Zheng H, Malzbender J, Krüger M, Spatschek R, Finsterbusch M 2018 Solid State Ionics 321 126Google Scholar

    [54]

    Sharafi A, Haslam C G, Kerns R D, Wolfenstine J, Sakamoto J 2017 J. Mater. Chem. A 5 21491Google Scholar

    [55]

    Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough J B 2018 J. Am. Chem. Soc. 140 6448Google Scholar

    [56]

    Dai J, Yang C, Wang C, Pastel G, Hu L 2018 Adv. Mater. 30 1802068Google Scholar

    [57]

    Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B 2020 ACS Energy Lett. 5 1136Google Scholar

    [58]

    Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S, Sun Y K 2019 ACS Energy Lett. 4 1394Google Scholar

    [59]

    Zhou H, Xin F, Pei B, Whittingham M S 2019 ACS Energy Lett. 4 1902Google Scholar

    [60]

    Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K 2018 Adv. Energy Mater. 8 1801202Google Scholar

    [61]

    Ryu H H, Park K J, Yoon D R, Aishova A, Yoon C S, Sun Y K 2019 Adv. Energy Mater. 9 1902698Google Scholar

    [62]

    Kim H, Lee E J, Sun Y K 2014 Mater. Today 17 285Google Scholar

    [63]

    Smith S, Thompson T, Sakamoto J, Allen J L, Baker D R, Wolfenstine J 2017 Solid State Ionics 300 38Google Scholar

    [64]

    Dixit M B, Zaman W, Bootwala Y, Zheng Y, Hatzell M C, Hatzell K B 2019 ACS Appl. Mater. Interfaces 11 45087Google Scholar

    [65]

    Troy S, Schreiber A, Reppert T, Gehrke H G, Finsterbusch M, Uhlenbruck S, Stenzel P 2016 Appl. Energy 169 757Google Scholar

    [66]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Sci. Rep. 3 2261Google Scholar

    [67]

    Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M 2018 ACS Appl. Energy Mater. 1 1002Google Scholar

    [68]

    Aidoud D, Etiemble A, Guy Bouyssou D, Maire E, Le Bideau J, Guyomard D, Lestriez B 2016 J. Power Sources 330 92Google Scholar

    [69]

    Weston J E, Steele B C H 1982 Solid State Ionics 7 75Google Scholar

    [70]

    Arya A, Sharma A L 2020 J. Mater. Sci. 55 6242Google Scholar

    [71]

    Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T 2005 J. Power Sources 141 143Google Scholar

    [72]

    Lee W, Lyon C K, Seo J H, Lopez-Hallman R, Leng Y, Wang C Y, Hickner M A, Randall C A, Gomez E D 2019 Adv. Funct. Mater. 29 1807872Google Scholar

    [73]

    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Adv. Sci. 7 1903088Google Scholar

    [74]

    Hu X, Yan G, Cheng X, Malzbender J, Qiang W, Huang B 2019 J. Am. Ceram. Soc. 102 1953

    [75]

    Hu X, Cheng X, Qin S, Yan G, Malzbender J, Qiang W, Huang B 2018 Ceram. Int. 44 1902Google Scholar

    [76]

    Ishidzu K, Oka Y, Nakamura T 2016 Solid State Ionics 288 176Google Scholar

    [77]

    Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J 2017 Adv. Energy Mater. 7 1601507Google Scholar

    [78]

    Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X 2019 Adv. Energy Mater. 9 1803963Google Scholar

    [79]

    Zhang C, Xu S, Han B, Lin G, Huang Q, Ivey D G, Yang C, Wang P, Wei W 2019 J. Power Sources 431 40Google Scholar

    [80]

    Wu B, Wang S, Evans Iv W J, Deng D Z, Yang J, Xiao J 2016 J. Mater. Chem. A 4 15266Google Scholar

    [81]

    Li H, Liu A, Zhang N, Wang Y, Yin S, Wu H, Dahn J R 2019 Chem. Mater. 31 7574Google Scholar

    [82]

    Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q 2016 Adv. Sci. 3 1500213Google Scholar

    [83]

    Waetzig K, Rost A, Langklotz U, Matthey B, Schilm J 2016 J. Eur. Ceram. Soc. 36 1995Google Scholar

    [84]

    Bucci G, Swamy T, Chiang Y M, Carter W C 2017 J. Mater. Chem. A 5 19422Google Scholar

    [85]

    Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J 2017 Chem. Mater. 29 5574Google Scholar

    [86]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2019 Nat. Rev. Mater. 5 105

    [87]

    Kuang Y, Chen C, Kirsch D, Hu L 2019 Adv. Energy Mater. 9 1901457Google Scholar

    [88]

    Devaux D, Harry K J, Parkinson D Y, Yuan R, Hallinan D T, MacDowell A A, Balsara N P 2015 J. Electrochem. Soc. 162 A1301Google Scholar

    [89]

    Liu T, Zhang Y, Chen R, Zhao S X, Lin Y, Nan C W, Shen Y 2017 Electrochem. Commun. 79 1Google Scholar

    [90]

    Huang W, Zhao N, Bi Z, Shi C, Guo X, Fan L, Nan C 2020 Mater. Today Nano 10 100075Google Scholar

    [91]

    Dixit M B, Zaman W, Hortance N, Vujic S, Harkey B, Shen F, Tsai W Y, De Andrade V, Chen X C, Balke N, Hatzell K B 2020 Joule 4 207Google Scholar

    [92]

    Zhao N, Fang R, He M H, Chen C, Li Y Q, Bi Z J, Guo X X 2018 Rare Met. 37 473Google Scholar

    [93]

    Sakamoto J 2019 Nat. Energy 4 827Google Scholar

    [94]

    Kim S H, Kim K, Choi H, Im D, Heo S, Choi H S 2019 J. Mater. Chem. A 7 13650Google Scholar

    [95]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [96]

    Xia S, Wu X, Zhang Z, Cui Y, Liu W 2019 Chem. 5 753Google Scholar

    [97]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [98]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V, Westover A S, Zeier W G 2020 ACS Energy Lett. 5 922Google Scholar

    [99]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [100]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [101]

    Zhang X, Wang A, Liu X, Luo J 2019 Acc. Chem. Res. 52 3223Google Scholar

    [102]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [103]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2019 Adv. Energy Mater. 10 1903253

    [104]

    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J G 2018 Nat. Energy 3 600Google Scholar

    [105]

    Jung S H, Kim U H, Kim J H, Jun S, Yoon C S, Jung Y S, Sun Y K 2019 Adv. Energy Mater. 10 1903360

    [106]

    Liu Y, Harlow J, Dahn J 2020 J. Electrochem. Soc. 167 020512Google Scholar

    [107]

    Lee H, Oh P, Kim J, Cha H, Chae S, Lee S, Cho J 2019 Adv. Mater. 31 1900376Google Scholar

    [108]

    Zeng H, Ji X, Tsai F, Zhang Q, Jiang T, Li R K Y, Shi H, Luan S, Shi D 2018 Solid State Ionics 320 92Google Scholar

    [109]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [110]

    Bi Z, Zhao N, Ma L, Fu Z, Xu F, Wang C, Guo X 2020 Chem. Eng. J. 387 124089Google Scholar

    [111]

    Bi Z, Zhao N, Ma L, Shi C, Fu Z, Xu F, Guo X 2020 J. Mater. Chem. A 8 4252Google Scholar

    [112]

    Zhang X D, Shi J L, Liang J Y, Wang L P, Yin Y X, Jiang K C, Guo Y G 2019 J. Power Sources 426 242Google Scholar

    [113]

    Yubuchi S, Ito Y, Matsuyama T, Hayashi A, Tatsumisago M 2016 Solid State Ionics 285 79Google Scholar

    [114]

    Ito Y, Otoyama M, Hayashi A, Ohtomo T, Tatsumisago M 2017 J. Power Sources 360 328Google Scholar

    [115]

    Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Energy Environ. Sci. 11 2142Google Scholar

    [116]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Scientific Reports 3 2261

    [117]

    Shi T, Tu Q, Tian Y, Xiao Y, Miara L J, Kononova O, Ceder G 2019 Adv. Energy Mater. 10 1902881

    [118]

    Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 8051Google Scholar

    [119]

    Li Y, Wang Z, Li C, Cao Y, Guo X 2014 J. Power Sources 248 642Google Scholar

    [120]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [121]

    Liu Y, Sun Q, Wang D, Adair K, Liang J, Sun X 2018 J. Power Sources 393 193Google Scholar

    [122]

    Guo J, Berbano S S, Guo H, Baker A L, Lanagan M T, Randall C A 2016 Adv. Funct. Mater. 26 7115Google Scholar

    [123]

    Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J 2017 Nano Energy 33 363Google Scholar

    [124]

    Wang X, Zhang Y, Zhang X, Liu T, Lin Y H, Li L, Shen Y, Nan C W 2018 ACS Appl. Mater. Interfaces 10 24791Google Scholar

    [125]

    Pervez S A, Ganjeh Anzabi P, Farooq U, Trifkovic M, Roberts E P L, Thangadurai V 2019 Adv. Mater. Interfaces 6 1900186

    [126]

    Huo H, Sun J, chen C, Meng X, He M, Zhao N, Guo X 2018 J. Power Sources 383 150Google Scholar

    [127]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [128]

    Gai J, Ma F, Zhang Z, Sun D, Jin Y, Guo Y, Kim W 2019 ACS Sustainable Chem. Eng. 7 15896Google Scholar

    [129]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [130]

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [131]

    Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G 2019 Adv. Mater. 31 1807789Google Scholar

    [132]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 A222

    [133]

    Xu B, Li W, Duan H, Wang H, Guo Y, Li H, Liu H 2017 J. Power Sources 354 68Google Scholar

    [134]

    Choudhury S, Vu D, Warren A, Tikekar M D, Tu Z, Archer L A 2018 Proc. Natl. Acad. Sci. 115 6620Google Scholar

  • [1] 徐吉元, 张家滕, 孟睿阳, 陈红升, 方以坤, 董生智, 李卫. 烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体温度稳定性和力学性能研究. 物理学报, 2023, 72(7): 077502. doi: 10.7498/aps.72.20222045
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [7] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [8] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [9] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良. 超导线圈绕制过程的力学行为研究. 物理学报, 2013, 62(5): 058403. doi: 10.7498/aps.62.058403
    [14] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [15] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [17] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [18] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响. 物理学报, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  10847
  • PDF下载量:  647
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-08-31
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回