搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(HfNbTaTiZr)C高熵碳化物Σ5{310}[001]晶界的稳定性及对其力学行为的影响

李传颖 付涛 彭向和

引用本文:
Citation:

(HfNbTaTiZr)C高熵碳化物Σ5{310}[001]晶界的稳定性及对其力学行为的影响

李传颖, 付涛, 彭向和

Stability of Σ5{310}[001]Grain Boundary in (HfNbTaTiZr)C High-Entropy Carbide and Its Implications for Mechanical Performance

Li Chuanying, Fu Tao, Peng Xianghe
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 晶界特征及受载行为是影响多晶陶瓷强度与塑性的关键因素。本文基于第一性原理计算研究了(HfNbTaTiZr)C高熵碳化物陶瓷(High-entropy carbide ceramic,HECC)及其组分二元过渡金属碳化物(Transition metal carbides, TMCs)中Σ5 {310}[001]晶界的稳定性及其在外载下的力学响应。结果显示:各体系均存在Open与Compact型两类晶界,Open型晶界能较低,结构更稳定。剪切变形下,除IVB族TMCs的Open型晶界因形成C–C键而发生TM–C键断裂失效外,其余体系均表现为晶界迁移。HECC中Open型晶界的首次迁移应力高于TMCs,体现出多主元晶界的强化作用。拉伸作用下,含Compact型晶界的TMCs主要以石墨化方式失效,而HECC同时出现石墨化与沿晶断裂。对于Open型晶界,IVB族TMCs因晶界过剩体积增大而屈服,VB族TMCs则发生沿晶断裂,两类机制在HECC中均可观察到。值得注意的是,含Compact型晶界HECC的屈服强度接近TMCs的峰值,应力水平突破了理想状态下“短板效应”的限制。本研究揭示了晶界结构与多主元效应在力学响应中的协同作用,研究结果可为HECC的晶界调控与力学性能优化提供理论依据。
    The characteristics of grain boundaries (GBs) and their mechanical responses under external loading are pivotal in governing the strength and plasticity of polycrystalline ceramics. In this study, first-principles calculations were employed to investigate the stability of Σ5 {310}[001] GBs in (HfNbTaTiZr)C high-entropy carbide ceramic (HECCs) and its constituent binary transition-metal carbides (TMCs), as well as their mechanical behavior under shear and tensile deformation. The results showed that the Σ5{310}[001] GBs in all systems were classified into "Open GB" and "Compact GB" based on their morphologies, with the Open GB exhibiting lower GB formation energy and thus greater structural stability. Under shear deformation, all carbides display shear-coupled GB migration, except for the Open GBs in group IVB TMCs, where the formation of C-C bonds induces supercell failure through the rupture of TM-C bonds. Furthermore, the initial migration stress of Open GB in the HECC is higher than that in binary TMCs, highlighting the strengthening effect introduced by multicomponent GBs. Under tensile deformation, binary TMCs containing Compact GB primarily fail through graphitization, whereas the HECC exhibits both graphitization and intergranular fracture. For Open GB, group IVB TMCs yield due to increased excess volume of GB, while group VB TMCs undergo intergranular fracture; both failure mechanisms coexist in the HECC. Notably, the HECC containing Compact GBs exhibits yield strength comparable to the peak strength of binary TMCs, surpassing the "weakest-link" limit typically associated with ideal condition (0 K and defect-free). Overall, this work elucidates the synergistic roles of GB and multicomponent effects in governing mechanical responses in HECC, suggesting that the interplay between multicomponent effects and defects may underlie the exceptional mechanical performance of high-entropy materials. These findings provide theoretical guidance for GB engineering and mechanical optimization in HECCs, and they offer insights into exploring their mechanical behavior under complex defect interactions.
  • [1]

    Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Metall. Mater. Trans. A 35 A 2533

    [2]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448

    [3]

    Ding Q Q, Zhang Y, Chen X, Fu X Q, Chen D K, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M R, Li J X, Zhang Z, Zhu T, Ritchie R O, Yu Q 2019 Nat. 574 223

    [4]

    Yu X L, Chen Q J, Cui X, Ouyang D L 2025 Nat. Commun. 16 2828

    [5]

    Zhang R-Z, Reece M J 2019 J. Mater. Chem. A 7 22148

    [6]

    Sangiovanni D G, Tasnadi F, Harrington T, Oden M, Vecchio K S, Abrikosov I A 2021 Mater. Des. 204 109634

    [7]

    Huang S S, Zhang J, Fu H J, Xiong Y X, Ma S H, Xiang X P, Xu B, Lu W Y, Zhang Y W, Weber W J, Zhao S J 2024 Prog. Mater Sci. 143 101250

    [8]

    Anand G, Wynn A P, Handley C M, Freeman C L 2018 Acta Mater. 146 119

    [9]

    Jana S S, Banerjee R, Maiti T 2025 J. Mater. Chem. A 13 27050

    [10]

    Gild J, Zhang Y Y, Harrington T, Jiang S C, Hu T, Quinn M C, Mellor W M, Zhou N X, Vecchio K, Luo J 2016 Sci. Rep. 6 37946

    [11]

    Yang Y, Liang S Y, Bi J Q, Hou H L, Qiao L J, Liu S S, Wang T, Gong H Y, Qian Z, Shi J W, Li W Q 2025 J. Am. Ceram. Soc. 108 e20503

    [12]

    Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111

    [13]

    Li J C, Chen Y J, Zhao Y M, Shi X W, Wang S, Zhang S 2022 J. Alloys Compd. 926 166807

    [14]

    Yan X L, Constantin L, Lu Y F, Silvain J-F, Nastasi M, Cui B 2018 J. Am. Ceram. Soc. 101 4486

    [15]

    Zhou J Y, Zhang J Y, Zhang F, Niu B, Lei L W, Wang W M 2018 Ceram. Int. 44 22014

    [16]

    Ye B L, Wen T Q, Nguyen M C, Hao L Y, Wang C-Z, Chu Y H 2019 Acta Mater. 170 15

    [17]

    Cao Z N, Sun J L, Meng L T, Zhang K G, Zhao J, Huang Z F, Yun X L 2023 J. Mater. Sci. Technol. 161 10

    [18]

    Yu D, Yin J, Zhang B H, Liu X J, Reece M J, Liu W, Huang Z R 2021 J. Eur. Ceram. Soc. 41 3823

    [19]

    Ye B L, Wen T Q, Liu D, Chu Y H 2019 Corros. Sci. 153 327

    [20]

    Ye B L, Wen T Q, Huang K H, Wang C Z, Chu Y H 2019 J. Am. Ceram. Soc. 102 4344

    [21]

    Li C Y, Fu T, Hu H, Weng S Y, Peng X H 2025 ACS Appl. Mater. Interfaces 17 36960

    [22]

    Li C Y, Fu T, Shen X, Hu H, Weng S Y, Yin D Q, Peng X H 2024 Surf. Interf. 52 104982

    [23]

    Zhu Y J, Guan L, Duan C Q, Zhang J X, Yan Z K, Wen L C, Wang Z H, Sun X X, Yao Y L, Guo X Q, Zhang R, Zhao B 2025 J. Mater. Sci. Technol. 224 302

    [24]

    Perrin A E, Schuh C A 2021 Annu. Rev. Mater. Res. 51 241

    [25]

    Meiners T, Frolov T, Rudd R E, Dehm G, Liebscher C H 2020 Nat. 579 375

    [26]

    Frolov T, Olmsted D L, Asta M, Mishin Y 2013 Nat. Commun. 4 1899

    [27]

    Wang Z Q, Wu H H, Wu Y, Huang H L, Zhu X Y, Zhang Y J, Zhu H H, Yuan X Y, Chen Q, Wang S D, Liu X J, Wang H, Jiang S H, Kim M J, Lu Z P 2022 Mater. Today 54 83

    [28]

    Julie S, David C, Wasekar N P, Parida P K, Ghosh C 2024 Surf. Interf. 46 103938

    [29]

    Zhu Q, Cao G, Wang J W, Deng C, Li J X, Zhang Z, Mao S X 2019 Nat. Commun. 10 156

    [30]

    Rajabzadeh A, Mompiou F, Legros M, Combe N 2013 Phys. Rev. Lett. 110 265507

    [31]

    Tatami J, Yasuda K, Matsuo Y, Kimura S (Sōmiya S, et al. ed) 1998 Materials Science and Engineering Serving Society (Amsterdam: Elsevier Science B.V.) pp69-72

    [32]

    Wang C Y, Qin M D, Lei T J, He Y B, Kisslinger K, Rupert T J, Luo J, Xin H L 2021 J. Eur. Ceram. Soc. 41 5380

    [33]

    Wang B W, Pan C L, Jin Z Y, Zhu H M, Lu C, Hufenbach J K, Li X Q, Kosiba K 2025 Virtual Phys. Prototy. 20 e2515238

    [34]

    Hu H, Fu T, Wang S Y, Li C Y, Weng S, Yin D Q, Peng X H 2025 Int. J. Plast. 185 104219

    [35]

    Wang Z C, Saito M, McKenna K P, Gu L, Tsukimoto S, Shluger A L, Ikuhara Y 2011 Nat. 479 380

    [36]

    Patala S, Mason J K, Schuh C A 2012 Prog. Mater Sci. 57 1383

    [37]

    Cantwell P R, Frolov T, Rupert T J, Krause A R, Marvel C J, Rohrer G S, Rickman J M, Harmer M P 2020 Annu. Rev. Mater. Res. 50 465

    [38]

    Kumar N, Choudhuri D, Banerjee R, Mishra R S 2015 Int. J. Plast. 68 77

    [39]

    Trahanovsky M E 2012 Bicrystal-array fabrication (University of California, Berkeley)

    [40]

    Duffy D M, Tasker P W 1983 Philos. Mag. A 47 817

    [41]

    Verma A K, Karki B B 2010 Am. Mineral. 95 1035

    [42]

    Sun X-Y, Cordier P, Taupin V, Fressengeas C, Karki B B 2017 Eur. J. Mineral. 29 155

    [43]

    Bean J J, Saito M, Fukami S, Sato H, Ikeda S, Ohno H, Ikuhara Y, McKenna K P 2017 Sci. Rep. 7 45594

    [44]

    Hirel P, Carrez P, Cordier P 2022 Acta Mater. 240 118297

    [45]

    Cottom J, Bochkarev A, Olsson E, Patel K, Munde M, Spitaler J, Popov M N, Bosman M, Shluger A L 2019 ACS Appl. Mater. Interfaces 11 36232

    [46]

    Popov M N, Bochkarev A S, Razumovskiy V I, Puschnig P, Spitaler J 2018 Acta Mater. 144 496

    [47]

    McKenna K P 2018 J. Appl. Phys. 123 075301

    [48]

    Zhang L, Wang L, Yu W S, Shen S P, Fu T 2019 Ceram. Int. 45 5531

    [49]

    Dai F-Z, Sun Y J, Ren Y X, Xiang H M, Zhou Y C 2022 J. Mater. Sci. Technol. 101 234

    [50]

    Karki B B, Ghosh D B, Verma A K 2015 Am. Mineral. 100 1053

    [51]

    Yokoi T, Yoshiya M 2018 Physica B: Condensed Matter 532 2

    [52]

    Yu R, He L L, Ye H Q 2003 Acta Mater. 51 2477

    [53]

    Yu R, Zhan Q, He L L, Zhou Y C, Ye H Q 2002 Acta Mater. 50 4127

    [54]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [55]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [56]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [57]

    Li C Y, Fu T, Li X L, Hu H, Peng X H 2023 Phys. Rev. B 107 224106

    [58]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [59]

    Wolf D (Buschow K H J, et al. ed) 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) pp3597-3609

    [60]

    Hirel P 2015 Comput. Phys. Commun. 197 212

    [61]

    Yokoi T, Ikawa K, Nakamura A, Matsunaga K 2021 Phys. Chem. Chem. Phys. 23 10118

    [62]

    Yokoi T, Arakawa Y, Ikawa K, Nakamura A, Matsunaga K 2020 Phys. Rev. Mater. 4 026002

    [63]

    Feng L, Chen W-T, Fahrenholtz W G, Hilmas G E 2021 J. Am. Ceram. Soc. 104 419

    [64]

    Zhang W, Chen L, Xu C G, Lu W Y, Wang Y J, Ouyang J H, Zhou Y 2021 J. Mater. Sci. Technol. 72 23

    [65]

    Oses C, Toher C, Curtarolo S 2020 Nat. Rev. Mater. 5 295

    [66]

    Sangiovanni D G, Mellor W, Harrington T, Kaufmann K, Vecchio K 2021 Mater. Des. 209 109932

    [67]

    Akrami S, Edalati P, Fuji M, Edalati K 2021 Mater. Sci. Eng. R-Rep. 146 100644

    [68]

    Qian C, Zhang X Q, Chen X Y, Su L J, Chen R, Wen J S, Wu B 2025 Surf. Interf. 72 107071

    [69]

    Song W Y, Lu Y J, Wang C Y, Xu J H, Liu X, Ma B, Wang Y M, Wu B 2024 J. Alloys Compd. 1002 175455

    [70]

    Zhang C-b, Qian C, Ye Z-a, Zhao P-h, Chen R, Wu B, Qiao Y, Weng L-j, Su L-j, Xie T-l, Sa B-s, Liu Y, Wang C-x 2025 T. Nonferr. Metal. Soc. 35 2320

    [71]

    He Q F, Tang P H, Chen H A, Lan S, Wang J G, Luan J H, Du M, Liu Y, Liu C T, Pao C W, Yang Y 2021 Acta Mater. 216 117140

    [72]

    Yu H, Bahadori M, Thompson G B, Weinberger C R 2017 J. Mater. Sci 52 6235

    [73]

    Yu X-X, Weinberger C R, Thompson G B 2016 Comput. Mater. Sci. 112 318

    [74]

    Aleman A, Zaid H, Cruz B M, Tanaka K, Yang J M, Kindlund H, Kodambaka S 2021 Acta Mater. 221 117384

    [75]

    Rowcliffe D J, Hollox G E 1971 J. Mater. Sci 6 1261

    [76]

    Kiani S, Yang J-M, Kodambaka S 2015 J. Am. Ceram. Soc. 98 2313

    [77]

    Li C Y, Fu T, Hu H, Duan M Y, Weng S Y, Peng X H 2024 Phys. Rev. B 109 134110

    [78]

    van Driel J, Schusteritsch G, Brodholt J P, Dobson D P, Pickard C J 2020 Phys. Chem. Miner. 47 11

    [79]

    De Leon N, Yu X X, Yu H, Weinberger C R, Thompson G B 2015 Phys. Rev. Lett. 114 165502

    [80]

    Li C Y, Fu T, Hu H, Peng X H 2022 Phys. Rev. B 105 224102

    [81]

    Zhang J, Xu B, Xiong Y X, Ma S H, Wang Z, Wu Z G, Zhao S J 2022 npj Comput. Mater. 8 5

    [82]

    Peng C, Gao X, Wang M Z, Wu L L, Tang H, Li X M, Zhang Q, Ren Y, Zhang F X, Wang Y H, Zhang B, Gao B, Zou Q, Zhao Y C, Yang Q, Tian D X, Xiao H, Gou H Y, Yang W G, Bai X D, Mao W L, Mao H-k 2019 Appl. Phys. Lett. 114 011905

    [83]

    Wang Z, Li Z-T, Zhao S-J, Wu Z-G 2021 Tungsten 3 131

    [84]

    Zhao S J 2021 J. Am. Ceram. Soc. 104 1874

    [85]

    Liu Y W, Ma M D, Wang W, Tang H F, Yu H L, Zhuang L, Xie P B, Chu Y H 2025 Adv. Funct. Mater. 35 2416992

  • [1] 吴昊, 王旭, 王建元, 翟薇, 魏炳波. 三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能. 物理学报, doi: 10.7498/aps.74.20250657
    [2] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, doi: 10.7498/aps.74.20250518
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [4] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略. 物理学报, doi: 10.7498/aps.69.20200713
    [5] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191069
    [6] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, doi: 10.7498/aps.68.20182125
    [7] 易军. 非晶纤维的制备和力学行为. 物理学报, doi: 10.7498/aps.66.178102
    [8] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, doi: 10.7498/aps.66.196101
    [9] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, doi: 10.7498/aps.63.098102
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, doi: 10.7498/aps.63.136801
    [11] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.046201
    [12] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, doi: 10.7498/aps.61.197703
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, doi: 10.7498/aps.61.167101
    [14] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, doi: 10.7498/aps.60.016107
    [15] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, doi: 10.7498/aps.60.077104
    [16] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, doi: 10.7498/aps.58.644
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, doi: 10.7498/aps.56.6118
    [18] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响. 物理学报, doi: 10.7498/aps.55.2328
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, doi: 10.7498/aps.53.2497
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  21
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回