搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量转换原理的磁电层合材料低频磁电响应分析

代显智

引用本文:
Citation:

基于能量转换原理的磁电层合材料低频磁电响应分析

代显智

Low frequency magnetoelectric response analysis of magnetoelectric laminate material based on energy conversion principle

Dai Xian-Zhi
PDF
导出引用
  • 提出了一种基于能量转换原理的磁致伸缩/压电层合材料低频磁电响应模型,并对不同层合结构的磁电响应特性进行了对比研究. 该模型假定层合材料层间能量传递通过层间剪切力来实现,利用应力函数法分析了磁致伸缩层和压电层的应力与应变,求出了磁致伸缩层的应变能和存储磁场能以及压电层的应变能和电场能;利用Hamilton最小能量原理求出了层间剪切力的大小,获得了开路状态下层合材料的低频磁电响应模型. 发现磁电电压系数与磁致伸缩材料的磁导率、泊松比、磁机耦合系数以及压电材料的泊松比、机电耦合系数等有关,并对这些参数的影响进行了分析. 同时对两层和三层结构的层合材料磁电特性进行了对比研究,发现层合结构不同则获得的磁电系数公式不同,用相应的公式计算得到的误差才会最小. 研究结果表明,本文的理论误差小于6.5%,与其他方法相比,本文的理论模型能更好地描述磁电层合材料的低频磁电响应特性.
    A low frequency magnetoelectric (ME) response model of magnetostrictive/piezoelectric laminate composite is presented based on energy conversion principle, and ME response characteristics of different laminate structures are compared in this paper. In this model it is assumed that the energy transfer between the layers of the composite laminates is achieved by the interlayer shear force. The stresses and strains of the magnetostrictive and piezoelectric layers are analyzed by the stress function method. While the strain and stored magnetic energy of magnetostrictive layers and the strain and electric field energy of piezoelectric layers are solved. Under open-circuit conditions, the interlayer shear force and the low frequency ME response model of laminate composites are obtained by using Hamilton principle of minimum energy. The theoretical results show that the ME voltage coefficient is related to the Poisson ratio, magnetic permeability, magnetomechanical coupling coefficient of magnetostrictive material, Poisson ratio, and electromechanical coupling coefficient of piezoelectric material. The influences of these parameters are analyzed. The magnetoelectric characteristics of two- and three-tier laminated structures are compared in this paper, showing that different laminated structures have different formulas for ME coefficient and calculation errors will be smaller when the corresponding ME coefficient formula is used. The experimental results show that the analytical error is smaller than 6% and the model can better describe the low frequency ME response characteristics of laminated magnetoelectric materials.
    • 基金项目: 国家自然科学基金(批准号:61074177)、四川省教育厅科研基金(批准号:11ZA037,12ZB148)、西华师范大学科研启动基金(批准号:11B006)和西华师范大学创新团队基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61074177), the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant Nos. 11ZA037, 12ZB148), the Scientific Research Foundation of China West Normal University (Grant No. 11B006), and the Innovative Research Team Foundation of China West Normal University.
    [1]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948

    [2]

    Chen L, Li P, Wen Y M, Wang D 2011 Acta Phys. Sin. 60 067501 (in Chinese) [陈蕾, 李平, 文玉梅, 王东 2011 物理学报 60 067501]

    [3]

    Chen L, Li P, Wen Y M, Zhu Y 2013 Chin. Phys. B 22 077505

    [4]

    Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese) [代显智, 文玉梅, 李平, 杨进, 江小芳 2010 物理学报 59 2137]

    [5]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese) [于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

    [6]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [7]

    Li P, Huang X, Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese) [李平, 黄娴, 文玉梅 2012 物理学报 61 137504]

    [8]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [9]

    Filippov D A 2005 Phys. Solid State 47 1082

    [10]

    Nan C W 1994 Phys. Rev. B 50 6082

    [11]

    Nan C W, Clarke D R 2005 J. Am. Ceram. Soc. 80 1333

    [12]

    Dong S, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1253

    [13]

    Dong S, Li J, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1236

    [14]

    Zhang L, Wang B W, Li S Y, Wang Z H, Huang W M, Wong L 2010 Chin. J. Sci. Instrum. 31 1528 (in Chinese) [张纳, 王博文, 李淑英, 王志华, 黄文美, 翁玲 2010 仪器仪表学报 31 1528]

    [15]

    Harshe G, Dougherty J P, Newnham R E 1993 Int. J. Appl. Electromagn. Mater. 4 145

    [16]

    Yang J, Wen Y M, Li P, Dai X Z 2009 Proceedings of Micro and Nanotechnology for Power Generation and Energy Conversion Applications Washington, USA, December 1-4, 2009 p352

    [17]

    Cui X, Dong S 2011 J. Appl. Phys. 109 083903

    [18]

    Bichurin M, Petrov V, Srinivasan G 2003 Phys. Rev. B 68 054402

    [19]

    Chang C M, Carman G 2007 Phys. Rev. B 76 134116

    [20]

    Huang Z 2006 J. Appl. Phys. 100 114104

    [21]

    Bichurin M I, Petrov V M, Srinivasan G 2002 J. Appl. Phys. 92 7681

    [22]

    Xu Z L 2006 Elasticity (Vol. 1) (4th Ed.) (Beijing: Higher Education Press) p32 (in Chinese) [徐芝纶 2006 弹性力学 (上册) (第四版) (北京: 高等教育出版社) 第32页]

    [23]

    Dong S, Zhai J, Xing Z, Li J, Viehland D 2007 Appl. Phys. Lett. 91 022915

    [24]

    Dai X, Zhang Z, Wang Y, Li J, Cheng L 2014 J. Appl. Phys. 115 014104

    [25]

    Yang F, Wen Y M, Zheng M, Li P 2006 Chin. J. Sensor. Actuat. 19 2371 (in Chinese) [杨帆, 文玉梅, 郑敏, 李平 2006 传感技术学报 19 2371]

    [26]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys. Lett. 88 062510

  • [1]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948

    [2]

    Chen L, Li P, Wen Y M, Wang D 2011 Acta Phys. Sin. 60 067501 (in Chinese) [陈蕾, 李平, 文玉梅, 王东 2011 物理学报 60 067501]

    [3]

    Chen L, Li P, Wen Y M, Zhu Y 2013 Chin. Phys. B 22 077505

    [4]

    Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese) [代显智, 文玉梅, 李平, 杨进, 江小芳 2010 物理学报 59 2137]

    [5]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese) [于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

    [6]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [7]

    Li P, Huang X, Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese) [李平, 黄娴, 文玉梅 2012 物理学报 61 137504]

    [8]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [9]

    Filippov D A 2005 Phys. Solid State 47 1082

    [10]

    Nan C W 1994 Phys. Rev. B 50 6082

    [11]

    Nan C W, Clarke D R 2005 J. Am. Ceram. Soc. 80 1333

    [12]

    Dong S, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1253

    [13]

    Dong S, Li J, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1236

    [14]

    Zhang L, Wang B W, Li S Y, Wang Z H, Huang W M, Wong L 2010 Chin. J. Sci. Instrum. 31 1528 (in Chinese) [张纳, 王博文, 李淑英, 王志华, 黄文美, 翁玲 2010 仪器仪表学报 31 1528]

    [15]

    Harshe G, Dougherty J P, Newnham R E 1993 Int. J. Appl. Electromagn. Mater. 4 145

    [16]

    Yang J, Wen Y M, Li P, Dai X Z 2009 Proceedings of Micro and Nanotechnology for Power Generation and Energy Conversion Applications Washington, USA, December 1-4, 2009 p352

    [17]

    Cui X, Dong S 2011 J. Appl. Phys. 109 083903

    [18]

    Bichurin M, Petrov V, Srinivasan G 2003 Phys. Rev. B 68 054402

    [19]

    Chang C M, Carman G 2007 Phys. Rev. B 76 134116

    [20]

    Huang Z 2006 J. Appl. Phys. 100 114104

    [21]

    Bichurin M I, Petrov V M, Srinivasan G 2002 J. Appl. Phys. 92 7681

    [22]

    Xu Z L 2006 Elasticity (Vol. 1) (4th Ed.) (Beijing: Higher Education Press) p32 (in Chinese) [徐芝纶 2006 弹性力学 (上册) (第四版) (北京: 高等教育出版社) 第32页]

    [23]

    Dong S, Zhai J, Xing Z, Li J, Viehland D 2007 Appl. Phys. Lett. 91 022915

    [24]

    Dai X, Zhang Z, Wang Y, Li J, Cheng L 2014 J. Appl. Phys. 115 014104

    [25]

    Yang F, Wen Y M, Zheng M, Li P 2006 Chin. J. Sensor. Actuat. 19 2371 (in Chinese) [杨帆, 文玉梅, 郑敏, 李平 2006 传感技术学报 19 2371]

    [26]

    Zhai J, Xing Z, Dong S, Li J, Viehland D 2006 Appl. Phys. Lett. 88 062510

  • [1] 张冬冬, 谭建国, 姚霄. 入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性. 物理学报, 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [2] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [3] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [4] 张冉, 谢文佳, 常青, 李桦. 纳米通道内气体剪切流动的分子动力学模拟. 物理学报, 2018, 67(8): 084701. doi: 10.7498/aps.67.20172706
    [5] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [6] 张松鹏, 张向军, 田煜, 孟永钢. 采用液晶涂层测量介质流与壁面间剪切应力的定量模型与试验研究. 物理学报, 2012, 61(23): 234702. doi: 10.7498/aps.61.234702
    [7] 李平, 黄娴, 文玉梅. 偏置电压对磁致伸缩/压电层合换能结构磁电性能影响. 物理学报, 2012, 61(13): 137504. doi: 10.7498/aps.61.137504
    [8] 王巍, 罗小彬, 杨丽洁, 张宁. 层状磁电复合材料谐振频率下的巨磁电容效应. 物理学报, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [9] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究. 物理学报, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [10] 鲍丙豪, 骆英. 纵向极化与磁化叠层复合材料磁电效应理论及计算. 物理学报, 2011, 60(6): 067504. doi: 10.7498/aps.60.067504
    [11] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [12] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [13] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [14] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [15] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [16] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [17] 杨伟伟, 文玉梅, 李 平, 卞雷祥. GMM/弹性板/PZT层状复合结构的纵振磁电响应. 物理学报, 2008, 57(7): 4545-4551. doi: 10.7498/aps.57.4545
    [18] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [19] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [20] 王作维, 林志方, 陶瑞宝. 电场方向对电流变液剪切应力的影响. 物理学报, 1996, 45(4): 640-646. doi: 10.7498/aps.45.640
计量
  • 文章访问数:  2896
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-09
  • 修回日期:  2014-06-13
  • 刊出日期:  2014-10-05

基于能量转换原理的磁电层合材料低频磁电响应分析

  • 1. 西华师范大学物理与电子信息学院, 南充 637009
    基金项目: 国家自然科学基金(批准号:61074177)、四川省教育厅科研基金(批准号:11ZA037,12ZB148)、西华师范大学科研启动基金(批准号:11B006)和西华师范大学创新团队基金资助的课题.

摘要: 提出了一种基于能量转换原理的磁致伸缩/压电层合材料低频磁电响应模型,并对不同层合结构的磁电响应特性进行了对比研究. 该模型假定层合材料层间能量传递通过层间剪切力来实现,利用应力函数法分析了磁致伸缩层和压电层的应力与应变,求出了磁致伸缩层的应变能和存储磁场能以及压电层的应变能和电场能;利用Hamilton最小能量原理求出了层间剪切力的大小,获得了开路状态下层合材料的低频磁电响应模型. 发现磁电电压系数与磁致伸缩材料的磁导率、泊松比、磁机耦合系数以及压电材料的泊松比、机电耦合系数等有关,并对这些参数的影响进行了分析. 同时对两层和三层结构的层合材料磁电特性进行了对比研究,发现层合结构不同则获得的磁电系数公式不同,用相应的公式计算得到的误差才会最小. 研究结果表明,本文的理论误差小于6.5%,与其他方法相比,本文的理论模型能更好地描述磁电层合材料的低频磁电响应特性.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回