搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构光照明技术在二维激光诱导荧光成像去杂散光中的应用

闫博 陈力 陈爽 李猛 殷一民 周江宁

引用本文:
Citation:

结构光照明技术在二维激光诱导荧光成像去杂散光中的应用

闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁

Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference

Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning
PDF
HTML
导出引用
  • 背景杂散光信号的干扰制约了激光片光成像技术的发展, 本文将结构光照明技术应用到激光片光成像测量中来消除杂散光的干扰. 介绍了基于结构光照明技术的工作原理和实验测量系统, 基于Matlab软件理论分析了相位移动结构光照明技术具有完全消除杂散光的作用, 并针对稳定罗丹明B溶液进行了二维激光诱导荧光成像实验, 进一步验证了相位移动结构光照明技术具有消除杂散光影响、提高二维成像精确度的作用. 最后利用基于锁相放大原理的结构光照明技术实现了非稳态扩散罗丹明B溶液的二维荧光瞬态成像实验, 并分析了罗丹明B溶液扩散的相关规律.
    Laser sheet imaging, also called planar laser imaging, is one of the most versatile optical imaging techniques and has been frequently used in several different areas. However, when applied to the limited operating space and strong light scattering media, the light originating from indirect reflections, multiple scattering and surrounding backgrounds can produce error especially in intensity-ratio based measurements.This work is motivated by these challenges, with the overall aim of making laser sheet imaging technique applicable for the study of eliminating the stray light interference. Therefore a novel two-dimensional imaging technique named structured laser illumination planar imaging (SLIPI) is developed based on planar laser imaging but uses a sophisticated illumination scheme i.e. spatial intensity modulation, to differentiate between the intensity contribution arising from useful signals and that from stray light. By recording and dealing with images, the SLIPI method can suppress the diffuse light and retain the useful signals.In this paper, we first use the MATLAB software to simulate the phase-shift SLIPI method, and the results show that the stray light interference can be eliminated completely. Furthermore, the phase-shift SLIPI is combined with the liquid solution (Rhodamine B solution) laser induced fluorescence (LIF) approach to imagine the concentration distribution. By recording three images, between which this encoding is changed noticeably only for the useful LIF signals, the phase-shift SLIPI method is evidenced to be able to remove the diffuse light contribution, thus improving and enhancing the visualization quality. The instantaneous SLIPI images of rapidly moving samples, a key feature to study dynamic liquid solution diffusion behavior, are also acquired. The lock-in amplifier SLIPI technique is then experimentally studied under Rhodamine B diffused solution, and the phase-shift SLIPI method can remove the unwanted background interferences and achieve the significant improvements in terms of pronounced concentration distribution within the Rhodamine B solution.The SLIPI technique is relatively inexpensive: the cost does not exceed the cost of an ordinary laser sheet arrangement noticeably, and it can combine with several other linear imaging techniques, such as Rayleigh scattering, particle image velocimetry and laser-induced phosphorescence.
      通信作者: 陈爽, chenshuang827@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 91641118)和中国空气动力研究与发展中心风雷青年创新基金(批准号: FLYIF20160017, PJD20180131)资助的课题
      Corresponding author: Chen Shuang, chenshuang827@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91641118) and the Fenglei Youth Innovation Fund of CARDC (Grant Nos. FLYIF20160017, PJD20180131)
    [1]

    Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75Google Scholar

    [2]

    Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112Google Scholar

    [3]

    Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75Google Scholar

    [4]

    Adrian R J 2005 Exp. Fluids 39 159Google Scholar

    [5]

    陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65

    Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65

    [6]

    万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 物理学报 62 190601Google Scholar

    Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601Google Scholar

    [7]

    Limbach C M, Miles R B 2017 AIAA J. 55 112Google Scholar

    [8]

    Fourguette D C, Zurn R M, Long M B 1986 Combust. Sci. Technol. 44 307Google Scholar

    [9]

    徐春娇, 杨洪远, 杨明伟 2010 红外与激光工程 39 1143Google Scholar

    Xu C J, Yang Y H, Yang M W 2010 Infrared Laser Eng. 39 1143Google Scholar

    [10]

    Allison S W, Gilles G T 1997 Rev. Sci. Instrum. 68 2615

    [11]

    Elliott G S, Glumac N, Carter C D 2001 Meas. Sci. Tech. 12 452Google Scholar

    [12]

    Barlow R S, Wang G H, Filho P A, Sweeney M S 2009 P. Combust. Inst. 32 945Google Scholar

    [13]

    Omrane A, Juhlin G, Ossler F 2004 Appl. Optics 43 3523Google Scholar

    [14]

    Kitzhofer J, Nonn T, Brucker C 2011 Exp. Fluids 51 1471

    [15]

    Berrocal E, Churmakov D Y, Romanov V P, Jermy M C, Meglinski I V 2005 Appl. Opt. 44 2519Google Scholar

    [16]

    Kristensson E, Richter M, Pettersson S G, Aldén M, Andersson E S 2008 Appl. Opt. 47 3927Google Scholar

    [17]

    Kristensson E, Berrocal E, Richter M, Aldén M 2010 Atomization Sprays 20 337Google Scholar

    [18]

    Kristensson E, Berrocal E, Aldén M 2011 Opt. Lett. 36 1656Google Scholar

    [19]

    Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M 2008 Opt. Lett. 33 2752Google Scholar

    [20]

    Kristensson E, Bood J, Alden M, Nordström E, Zhu J, Huldt S, Bengtsson P E, Nilsson H, Berrocal E, Ehn A 2014 Opt. Express 22 7711Google Scholar

    [21]

    Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M, Linne M 2011 Opt. Express 19 13647Google Scholar

    [22]

    Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008 Opt. Express 16 17870Google Scholar

    [23]

    Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M 2011 Meas. Sci. Technol. 22 125303Google Scholar

    [24]

    Aldén M, Bood J, Li Z S, Richter M 2011 P. Combust. Inst. 33 69Google Scholar

    [25]

    Kristensson E, Ehn A, Bood H, Aldén M 2015 P. Combust. Inst. 35 3689Google Scholar

    [26]

    Yan B, Su T, Chen S, Chen L, Yang F R, Tu X B, Mu J H 2017 China National Symposium on Combustion Nanjing, China, October 13−15, 2017 p489

  • 图 1  旋转玻璃片改变激光光束位置示意图

    Fig. 1.  Diagram of laser beam transmission changed by rotating glass sheet.

    图 2  基于结构光照明技术的激光诱导发光图像测量装置(A1, 5×扩束镜; RG, Ronchi光栅; AR, 自动旋转台; GS, 玻璃片(5.3 mm); LS, 片光系统; A, 光阑; RB, 罗丹明B溶液; PF, 滤光片)

    Fig. 2.  LIF imaging setup based on the SLIPI technique (A1, 5 × beam expander; RG, Ronchi grating; AR, automatic rotary table; GS, glass sheet (5.3 mm); LS, light system; A, aperture slot; RB, Rhodamine B solution; PF, fliter).

    图 3  PS-SLIPI方法仿真计算全过程 (a) 调制振幅项A的值; (b) 无光栅调制时的强度值SNG = A(R) + B1(R) + B2(R); (c) 光栅调制后的强度值SC; (d) LA-SLIPI计算后的振幅相对误差值dA/A = (A1A)/A, 截止频率fc = 0.005 Hz; (e) PS-SLIPI计算后的振幅误差值dA/A = AAA, n = 3; (f) PS-SLIPI计算后的干扰分量误差值dB = BBB, n = 3

    Fig. 3.  Simulation process of the PS-SLIPI method: (a) The modulated amplitude value, A; (b) the intensity without grating modulation, SNG = A(R) + B1(R) + B2(R); (c) the intensity with grating modulation, SC; (d) the relative error of modulated amplitude value, A, calculated by LA-SLIPI method, dA = (A1A)/A, fc = 0.005 Hz; (e) the error of modulated amplitude value, A, calculated by PS-SLIPI method, dA = AAA, n = 3; (f) the error of interference components calculated by PS-SLIPI method, dB = BBB, n = 3.

    图 4  PS-SLIPI方法的光栅条纹移动图像

    Fig. 4.  Grating fringe changing images based on phase shifting SLIPI method.

    图 5  (a) 三种不同测试环境下的原始LIF图像; (b) 光栅调制LIF图像; (c) PS-SLIPI方法处理后的调制振幅(A)分布图像

    Fig. 5.  (a) Conventional (raw data) LIF images without grating modulation in three different measurement cases; (b) LIF images with grating modulation; (c) images of modulated amplitude value, A, calculated by phase shifting SLIPI method.

    图 6  (a) 不同测量时刻下的光栅调制LIF瞬态图像; (b) LA-SLIPI方法处理后的调制振幅(A)分布的瞬态图像

    Fig. 6.  (a) LIF images with grating modulation; (b) images of modulated amplitude value, A, calculated by LA-SLIPI method.

    表 1  两种SLIPI技术实验参数

    Table 1.  Experimental parameters of two SLIPI technique.

    背景分类激光输出能量相机曝光时间相机增益罗丹明B溶液浓度图像正弦调制周期/像素
    相位移动SLIPI技术Case 1100 mW0.025 s30稳态溶液:1 × 107 mol/L0.058593
    Case 2100 mW0.025 s30稳态溶液:1 × 107 mol/L0.058593
    Case 3100 mW0.025 s30稳态溶液:1 × 107 mol/L0.058593
    基于锁相放大原理的SLIPI技术Case 4100 mW0.025 s30非稳态扩散溶液: 将1 ×
    106 mol/L溶液注入到1 ×
    107 mol/L溶液.
    0.144536
    下载: 导出CSV
  • [1]

    Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75Google Scholar

    [2]

    Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112Google Scholar

    [3]

    Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75Google Scholar

    [4]

    Adrian R J 2005 Exp. Fluids 39 159Google Scholar

    [5]

    陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65

    Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65

    [6]

    万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 物理学报 62 190601Google Scholar

    Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601Google Scholar

    [7]

    Limbach C M, Miles R B 2017 AIAA J. 55 112Google Scholar

    [8]

    Fourguette D C, Zurn R M, Long M B 1986 Combust. Sci. Technol. 44 307Google Scholar

    [9]

    徐春娇, 杨洪远, 杨明伟 2010 红外与激光工程 39 1143Google Scholar

    Xu C J, Yang Y H, Yang M W 2010 Infrared Laser Eng. 39 1143Google Scholar

    [10]

    Allison S W, Gilles G T 1997 Rev. Sci. Instrum. 68 2615

    [11]

    Elliott G S, Glumac N, Carter C D 2001 Meas. Sci. Tech. 12 452Google Scholar

    [12]

    Barlow R S, Wang G H, Filho P A, Sweeney M S 2009 P. Combust. Inst. 32 945Google Scholar

    [13]

    Omrane A, Juhlin G, Ossler F 2004 Appl. Optics 43 3523Google Scholar

    [14]

    Kitzhofer J, Nonn T, Brucker C 2011 Exp. Fluids 51 1471

    [15]

    Berrocal E, Churmakov D Y, Romanov V P, Jermy M C, Meglinski I V 2005 Appl. Opt. 44 2519Google Scholar

    [16]

    Kristensson E, Richter M, Pettersson S G, Aldén M, Andersson E S 2008 Appl. Opt. 47 3927Google Scholar

    [17]

    Kristensson E, Berrocal E, Richter M, Aldén M 2010 Atomization Sprays 20 337Google Scholar

    [18]

    Kristensson E, Berrocal E, Aldén M 2011 Opt. Lett. 36 1656Google Scholar

    [19]

    Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M 2008 Opt. Lett. 33 2752Google Scholar

    [20]

    Kristensson E, Bood J, Alden M, Nordström E, Zhu J, Huldt S, Bengtsson P E, Nilsson H, Berrocal E, Ehn A 2014 Opt. Express 22 7711Google Scholar

    [21]

    Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M, Linne M 2011 Opt. Express 19 13647Google Scholar

    [22]

    Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008 Opt. Express 16 17870Google Scholar

    [23]

    Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M 2011 Meas. Sci. Technol. 22 125303Google Scholar

    [24]

    Aldén M, Bood J, Li Z S, Richter M 2011 P. Combust. Inst. 33 69Google Scholar

    [25]

    Kristensson E, Ehn A, Bood H, Aldén M 2015 P. Combust. Inst. 35 3689Google Scholar

    [26]

    Yan B, Su T, Chen S, Chen L, Yang F R, Tu X B, Mu J H 2017 China National Symposium on Combustion Nanjing, China, October 13−15, 2017 p489

  • [1] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统. 物理学报, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [3] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211712
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [6] 赵天宇, 周兴, 但旦, 千佳, 汪召军, 雷铭, 姚保利. 结构光照明显微中的偏振控制. 物理学报, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [7] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [8] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [9] 景敏, 华灯鑫, 乐静. 荧光激光雷达技术探测水面油污染系统仿真研究. 物理学报, 2016, 65(7): 070704. doi: 10.7498/aps.65.070704
    [10] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [11] 万文博, 华灯鑫, 乐静, 闫哲, 周春艳. 基于激光诱导叶绿素荧光寿命成像技术的植物荧光特性研究. 物理学报, 2015, 64(19): 190702. doi: 10.7498/aps.64.190702
    [12] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁. 激光诱导叶绿素荧光寿命的测量及其特性分析. 物理学报, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [13] 于淼, 高劲松, 张建, 徐念喜. 二维光栅与周期性缝隙阵列组合薄膜结构的杂散光抑制. 物理学报, 2013, 62(20): 204208. doi: 10.7498/aps.62.204208
    [14] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用. 物理学报, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [15] 李宏斌, 刘文清, 张玉钧, 丁志群, 赵南京, 魏庆农, 王玉平, 杨立书. 基于径向基函数网络的激光诱导荧光特征光谱分离算法. 物理学报, 2005, 54(9): 4451-4457. doi: 10.7498/aps.54.4451
    [16] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [17] 王储记, 陈 军, 章, 张立敏, 戴静华, 陈从香, 马兴孝. 超声冷却SO2( 1A2— 1A1)激光诱导荧光激发谱的转动分析. 物理学报, 1998, 47(8): 1258-1264. doi: 10.7498/aps.47.1258
    [18] 陈旸, 陆庆正, 王冬青, 盛六四, 王鸿飞, 张允武, 俞书勤, 马兴孝. 超声射流冷却CCl2自由基的激光诱导荧光激发谱. 物理学报, 1991, 40(6): 885-890. doi: 10.7498/aps.40.885
    [19] 陆庆正, 陈旸, 唐松柏, 马兴孝. 草酰氯的激光诱导荧光激发谱. 物理学报, 1991, 40(6): 878-884. doi: 10.7498/aps.40.878
    [20] 高文斌, 沈玉其, J. H?GER, W. KRIEGER. 激光诱导荧光法研究CH2Cl2分子的振动能量转移. 物理学报, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
计量
  • 文章访问数:  8870
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 修回日期:  2019-07-22
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回